Undergraduate study
Instrumentation and Control Engineering with Industry

MEng (Hons) Instrumentation and Control Engineering with Industry

UCAS code: H665 MEng/ICEI

This programme will set you firmly on the path for high earning potential as a professional engineer. You will learn the intricacies of digital electronics and microprocessors, networks and linear control to create instrumentation and control engineering systems which have a range of applications.

Course information

Full-time

  • Length: 5 years (including a work placement year)

More full-time details

Part-time

  • Not available part-time

Contact details

Further information

  • Facilities

    Reporting on engineering at Teesside University

    A tour of Teesside University engineering facilities and employer partnerships, enabling us to produce graduates ready for the world of work.

  • Facilities
 

From everyday items such as traffic lights or automatic doors, to more complex systems like aircraft, satellites and nuclear power plants, the uses for instrumentation and control technology are virtually endless. The North East is a major centre for industries constantly seeking well-qualified engineering graduates, and this degree programme takes full advantage of the University's location by providing you with significant practical elements and opportunity to engage with industry.

The programme is built around a pair of discipline-based threads. These are measurement systems and control systems. These threads form the basis of the majority of modules that run through all three years of the programme. The other modules, such as the mathematics, skills and project modules, support these threads and provide a more rounded and industrial-relevant educational experience.

Years 1, 2 and 3 include many of the same core modules as the BEng (Hons) Instrumentation and Control Engineering. In the final year, modules may take the form of mini design projects based on realistic engineering situations. This provides you with the opportunity to experience the project driven environment, typical of the commercial world. The individual project takes place across both Year 3 and the final year (the final-year individual project is a deepening extension/continuation of the Year 3 individual project). This allows you to spend a quarter of your study time in years 3 and 4 concentrating on research in an area of interest in preparation for graduation and your future career. Graduates can seek careers in a wide range of industries, such as oil and gas, manufacturing and environmental agencies.

100% of our MEng (Hons) Instrumentation and Control Engineering degree graduates are in work or further study (Destinations of Leavers from Higher Education 2015-16).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

This accredited degree will provide you with the BEng-level underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

All modules run through the academic year providing the opportunity for in-depth learning and experience of the subject material.

The final year completes the educational requirements (in compliance with UK-SPEC), at M-level, to permit progression to Chartered Membership of the Institution of Engineering Technology and registration with ECUK as a Chartered Engineer. Again a significant part of level 7 is dedicated to projects (the individual project - 30 credits and the industrially related group project - 20 credits). The remaining technical modules are selected from two sets of options (one set providing further deepening and the other providing broadening).

Course structure

Year 1 core modules

Calculus

Introducing the skills you need to study engineering at degree level, this module covers differential and integral calculus.

You develop your mathematical skills and learn techniques of fundamental operations such as differentiation and integration to solve differential equations.

You also improve your ability to select and apply appropriate calculus techniques to solve engineering problems.

Digital Electronics and Programmable Logic Controllers

You gain an introduction to basic digital logic operations and simple digital logic circuits. The module then examines microprocessor fundamentals and the programming of microprocessors in assembly language. Weekly lectures explain theory, discuss applications and develop your learning through the solution of simplified illustrative examples. Fortnightly, practical sessions reinforce the lecture material in digital electronics and provide an opportunity for you to program a microprocessor system using assembly language. You are assessed through a combination of in-course assignments and an end examination

Electrical and Electronic Principles

This module gives you a basic understanding of the physical fundamentals used in electrical engineering, together with specific techniques you need to determine the behaviour of electric circuits.

We cover the fundamentals of electrical circuit theory, analysis of electrical circuits, give you an understanding of simple analogue and digital circuits and an appreciation of their application to engineering problems.

We look at voltage, current, power, energy, resistance and impedance. Also magnetic fields and inductance, electric fields and capacitance, Kirchhoff’s Laws. We examine time varying voltages and currents, effects on inductors and capacitors, sinusoidal voltage and current use of symbolic notation.

You also study power, reactive power and apparent power, circuit analysis techniques, mesh and nodal analysis, transistors and properties of amplifiers.

Our primary method of teaching is lectures supported by laboratory sessions, tutorials, problem solving and directed learning.

You learn how to:

  • understand and use key elements of electrical and electronic theory
  • apply given tools in the solution of well defined electrical and electronic engineering problems
  • apply numerical skills to simple electrical and electronic engineering problems
  • use basic IT tools and specialist software to solve simple electrical and electronic engineering problems.

Engineering Design and CAD

You are introduced to the basic principles and practice of engineering design and the use of computer-aided design (CAD) systems. You are introduced to methods of graphical communication, competing requirements and organising design data. You use CAD to produce simple orthographic and schematic representations of engineered components. Your lectures cover design theory and you use our IT labs for computer-aided design.

Engineering Mathematics

This module introduces the range of mathematical skills that are relevant to an engineering degree. You revisit and develop your knowledge of the fundamentals of algebra, trigonometry and basic statistics. The central ideas of vectors, matrices, complex numbers, and differential and integral calculus are also examined.

Throughout the module you develop a range of mathematical skills and techniques fundamental to the solution of engineering problems. You also advance your skills in selecting and applying mathematical techniques.

This module is delivered through a combination of lectures and tutorial sessions.

Group Design Project

This is a group project module which is part of the group project theme running through all the en-gineering programmes. You are exposed to the practice of creating an engineered design and to the organisational issues of controlling and participating in a group project.

It will provide the opportunity to work in a team in order to solve a well defined problem. In the process, you will gain understanding of your own and other people’s knowledge and limitations, along with an appreciation of group dynamics and the process and importance of working with other members of a team.

An entire week is taken out from the standard teaching timetable and allocated to this module which allows the real time application of skills and knowledge developed in the preceding weeks to be applied to enable manufacture of the designed product.

Each group of students will be expected to produce a tangible output from the design and manufacturing work which will account for 60% of the module. For the remaining 40% of marks, you will be assessed on the group work process.

Physics and Instrumentation

This module provides you with an introduction to instrumentation, through studying the principles and characteristics of measurement systems and elements, and their underlying physical principles.

On successful completion of this module, you will be able to:

  • gather record, describe and evaluate sensor and system data from a variety of sources
  • demonstrate practical ability in carrying out experimental physical measurements, within defined contexts in areas relevant to physics and instrumentation
  • present written evidence to demonstrate understanding of experimental investigation of underlying physical principles of measurement sensors and systems.

You will be assessed on an exam, system design exercise and laboratory report.

Professional Skills

Knowledge of your degree subject is not the only thing you will learn at university, nor is it the only thing which potential employers will be looking for after graduation. You also need to develop a range of skills that are applicable in all walks of life. These include:
- the ability to communicate clearly and effectively to different audiences, both orally and in writing
- the ability to make an effective contribution as a member of a team, and also to work independently or on your own initiative when required
- the ability to tackle problems for which all the necessary knowledge is not available
- the ability to locate information and assess its usefulness
- the ability to make efficient and effective use of the latest information technology.

You also learn to assess their own performance - recognising and building on your strengths, identifying and improving your weaknesses.

This module is the first in a series running through each degree programme in which these key skills are explicitly developed and assessed, by means of a series of learning activities that require the use of different skills, while also teaching key aspects of the chosen subject. The module is delivered via a combination of seminars, laboratory classes and some lectures; the exact pattern will be different for different degree programmes. Assessment is via reflective statements, which require students to identify knowledge and skills that have been developed during the module

Properties of Materials

This module provides you with a foundational knowledge of important properties of engineering materials, together with a hands-on appreciation of these through laboratory-based practical sessions.

Fundamental relationships between processing, structure, properties and performance will be explored to highlight factors that influence the suitability of materials for various engineering applications.

 

Year 2 core modules

Electrical Machines

You study electrical machines and cover all the major machines: DC, induction, and synchronous, as well as some special machines including stepper and variable reluctance motors.

You also perform in-depth investigations into machine performance and operation characteristics, in both analytical and experimental methods, using laboratory setups and software packages (Pspice & Matlab) for the analysis of DC and AC machine performance during practical sessions.

Electronics and Networks

In this module we use a computer-based teaching approach to provide a thorough understanding of network theory, integrated-circuit operational amplifiers and feedback.

You review and extend the network theory underpinning this module and discover the characteristics and limitations of operational amplifiers (op-amps). We also examine the effects of various feedback configurations on op-amp performance and investigate a wide range of op-amp applications and design circuits to given specifications.

We look at basic amplifier concepts, basic op-amp configurations, feedback principles and op-amp imperfections.

Lectures are the main vehicle for presenting fundamentals and doing worked examples. We provide a detailed set of course notes.

Tutorial sessions (laboratory based) cover the analysis and design of circuits associated with particular applications using LTSPICE (electronic circuit simulation software).

Practical work is used to develop traditional practical skills but is enhanced by computer simulations. You work in groups of not more than three.

You learn how to:

  • demonstrate a detailed knowledge of aspects of electronics and networks
  • critically analyse a variety of ideas, contexts and frameworks associated with electronics and networks
  • apply, question and relate appropriate knowledge and concepts to a range of activities
  • identify key areas of problems and choose appropriate tools or methods for their resolution in a considered manner
  • interpret and use the information from manufacturers’ data sheets
  • apply practical testing methods to electronic circuits to establish system performance.

Embedded Systems

This teamwork module gives you the chance to solve an industrially relevant problem.

It develops your knowledge of embedded systems and the programming and application of these systems in real time.

Employment Skills for Engineers

You develop your self-marketing, confidence and professional skills that are typically demanded by potential graduate employers.

You are introduced to a number of role-play selection exercises often used by graduate employers; these can include preparing covering letters and CVs, online application forms, attending mock interviews, completing psychometric tests, delivering presentations and contributing to assessment centre tasks.

You develop the necessary skills to succeed at the above exercises using a Continuing Professional Development (CPD) format to emphasise the importance of skills development and career management. This module is also supported by the University’s Careers Service at key stages throughout the lecture plan.

Instrumentation and Control Design

In this group project module you work in teams to solve an industrially relevant instrumentation and control design problem. You develop employability skills such as project management, presentation of work, research and commercial awareness to support problem solving in a technical context.

Laplace Transforms

Learn advanced techniques relevant to the solution of discipline-specific engineering problems.

Module content includes the solution of second order differential equations and Laplace transforms.

You learn through lectures and worked examples which illustrate how mathematical techniques are applied.

Problem-solving tutorial exercises give you the opportunity to practise new skills and techniques.

Linear Systems and Control

You will develop a thorough understanding of time-domain and frequency-domain representations of signals and systems, and how to apply these ideas to engineering problems.

You will develop the necessary knowledge and techniques to create dynamic models of engineering systems.

We give you the knowledge and techniques for creating dynamic models of engineering systems and to apply computer-aided methods of analysis and design, plus use data acquisition systems for laboratory investigations.

We examine modelling and simulation, linear time-invariant systems, first and second-order systems, frequency response, poles and zeros, basic concepts of control, alternative control methods, fourier analysis and filters.

In lectures we explaina principles and discuss applications then give you a guided solution of relevant examples in tutorials.

In the laboratories you work in groups of up to three on a small engineering plant. You are expected to produce a model and carry out tests to establish parameters. This process enhances the theoretical work carried out in other parts of the module.

You learn how to:

  • demonstrate a detailed knowledge of aspects of linear systems and control
  • critically analyse a variety of ideas, contexts and frameworks associated with linear systems and control
  • apply, question and relate appropriate knowledge and concepts to a range of activities
  • identify key areas of problems and choose appropriate tools and methods for their resolution in a considered manner
  • use the industry-standard software MATLAB SIMULINK for simulation and design of signal processing and control systems
  • apply mathematical techniques to analyse and model signal processing and control systems.

Mathematics for Electrical and Instrumentation Engineers

This module introduces further techniques that are relevant to the solution of discipline-specific engineering problems. The content includes the Solution of Second Order Differential Equations, Laplace Transforms, Fourier Series and Transforms, and Matrix algebra.

Measurement Systems

Measurement systems is a module for students majoring in Instrumentation and Control engineering. This is one of modules which distinguish you from those who are on other courses.

From this module, you will learn to analyse the performance of measurement systems including the steady state and dynamic characteristics of a measurement system or an element. You will study principles of a wide range of sensing techniques and measurement systems.

A complete measurement system may include sensing element, conditioning circuit, signal transmission and signal display (presentation). All these elements comprise the full contents of this module. Besides, the noise and interference reduction techniques and protections including intrinsically instrumentation are important to instrumentation engineers. You will also touch these topics

Measurement and control is vital in process industries. This module introduces key elements in control and monitoring systems, for example measurement elements. Application of instrumentation can be found everywhere, from domestic water and gas systems to the NASA space station.

You discover constituents of measurement systems, sensing element (primary and secondary), signal conditioning, signal processing, display (data presentation) and static characteristics of sensors.

The module is divided into lectures, tutorials and practicals.

You will learn:

  • to demonstrate a detailed knowledge of the principles and characteristics of different sensors
  • to critically analyse the characteristics of system elements and their effect on system error
  • to understand the effects of noise and interference and methods of reduction
  • to employ a balanced logical and supported argument in the selection and analysis of sensor system
  • to apply numerical and statistical skills in the analysis and selection of measurement systems.

 

Year 3 work placement

Year 4 core modules

Analytical Measurement and Smart Sensors

In this module, you develop an understanding of the principles and technology of major analytical measurement systems. You investigate the limitations of accuracy along with maintenance requirements of analytical sensor elements.

You also review and work with indirect and inferred measurement methods, such as known addition. There is an increasing statutory element to analysis; you learn about the legal applications and requirements of certain analytical and physical measurements.

You also learn about the application of microprocessor / microcontroller systems within modern instrumentation to enhance functionality with particular reference to analytical applications.

Industrial Control and Informatics

In this module you work in a team to solve a typical employer-relevant problem using industrial informatics and computer-based control. These include – but are not limited to – using modern distributed control system components and software.

This module gives you an understanding of your knowledge and limitations, and the importance of bringing in and working with people with different knowledge and skillsets. Working in a team enables you to successfully resolve problems which wouldn’t be possible to resolve by a single individual.

This module develops a consolidated set of employability skills in managing projects, presenting work, research and commercial awareness in your technical field to support complex technical problem solving. You also enhance your awareness of professional issues such as health, safety, environment and ethics in the workplace and related standards and guidelines.

Integrated Masters Engineering Project

This module extends the development of independent learning skills by allowing the student to investigate an area of engineering for an extended period. The student will work independently or in a small team, but will produce individual work.

Training will be given in writing technical reports for knowledgeable readers and the student will produce a report/dissertation of the work covered. In addition, the student will give an oral presentation, poster presentation or both. The topic can be in the form of a research project or a design project. Key skills in research, knowledge application and creation will be developed through keynote lectures and self-managed independent study.

Management Skills for Engineers

You develop advanced interpersonal skills that enable you to integrate into the workplace. You develop key employability skills that support the engineering design and management process. Issues such as ethics, conflict in a team, equality and diversity, presenting to challenging non-technical audiences such as members of the public or the media and corporate responsibility are considered from a senior management perspective.

 

and two optional modules

Control 2

An introduction to control system design techniques for single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems using classical control theory, state-space methods and computer-based (sampled-data) digital control systems.

You cover practical techniques for creating linear and non-linear dynamic models.

Control l

An introduction to control system design techniques for single-input single-output (SISO) continuous systems using classical design methods.

You cover practical techniques of creating and simulating linear dynamic models. You also gain an understanding of non-linear systems and models.

Electric Drive Systems l

Develop your capability to analyse and design power electronic converters and integrate them into direct current electric drive systems.

Lectures offer explanations of principles and discussion of applications. Tutorials provide guided exercises. You also take part in a series of practical classes designed to reinforce the theory you have learnt. These sessions demonstrate the dependence of drive system performance on the characteristics of power converters and control schemes.

Electric Drive Systems ll

Develop your capability to analyse and design power electronic converters and integrate them into alternating current electric drive systems.

Lectures offer explanations of principles and discussion of applications. Tutorials provide guided exercises. You also take part in a series of practical classes designed to reinforce the theory you have learnt. These sessions demonstrate the dependence of drive system performance on the characteristics of power converters and control schemes.

Mechatronics

In an increasingly competitive and diverse world, market driven products demand a more complex and integrated engineering solution. This module in Mechatronics gives you more potential in the field of engineering by applying a more multi-disciplinary ‘mechatronics’ approach to engineering problems, whilst making you more marketable as an engineer in an increasingly competitive world.

 

Final-year core modules

Industry-related Group Project

This is a group project module which is part of the group project theme running through the engineering programmes. This module provides you with the opportunity to work in a team in order to solve a complex industrial related problem. Where possible, the team will be linked directly to a company which has an identified problem suitable for a project to be undertaken. You undertake visits to the company and may be based there for two intensive weeks during the year.

This gives you an understanding of your knowledge and limitations and the importance of working with other members of a team as well as those outside of the team from other industrial departments. It will develop a highly tuned set of employability skills in project management, presentation of work, research and commercial awareness in order to support complex problem solving in a technical context and enable students to make judgements on professional issues such as health, safety, environment and ethics in the workplace.

Integrated Masters Research Project

This module extends the development of independent learning skills by allowing the student to investigate an area of engineering for an extended period. The student will work independently or in a small team, but will produce individual work.

Training will be given in writing technical reports for knowledgeable readers and the student will produce a report/dissertation of the work covered. In addition, the student will give an oral presentation, poster presentation or both. The topic can be in the form of a research project or a design project. Key skills in research, knowledge application and creation will be developed through keynote lectures and self-managed independent study.

Leadership and Entrepreneurship

Enterprise is about spotting opportunities, creating new ideas and having the confidence and capabilities to turn these ideas into working realities. Entrepreneurship is about using enterprise to create new business and new businesses.

This module covers a range of topics related to enterprise, entrepreneurship and the development of an inspirational leader. The skills and knowledge needed to set up and operate an engineering business will be covered. You will review their current approach to leadership, developed in earlier modules and explore your own unique leadership style. You will obtain feedback on your leadership profile from your peers and discover new capabilities. They will clarify your own sense of purpose and learn practises for sustaining yourself, your teams and your organisations.

Lectures and seminars will provide core material and explore case studies. You will work in small facilitated groups during the seminar sessions where you will examine case studies in detail and develop business plans.

 

and two optional modules

Hydrocarbon Production Engineering

This module provides you with a detailed understanding of hydrocarbon production operations. You study oil and gas production systems including wells, pipelines, separators and chokes. You look at the inflow performance relationships for oil and gas wells, and well performance analysis. You also cover the artificial lift system including electric submersible pumps, hydraulic pumps and gas lift. You learn about surface production facilities and operations used in crude oil treatment and natural gas reconditioning such as sweetening and dehydration. This module is delivered through lectures and tutorial sessions. You are assessed by an in-course assessment (30%) and exam (70%).

Plant and Process Monitoring

The process industries typically record a large amount of process data via their Supervisory Control And Data Acquisition (SCADA) systems. Appropriate analysis of this data allows for better production quality, early fault detection and ultimately better safety checks. You study the appropriate system identification techniques to model processes on the basis of this data. You look at Statistical Process Control (SPC) techniques that enable critical analysis of data in order to make informed judgement in the running of continuous and batch processes. You explore the use of the industry standard Six Sigma technique to improve process plant operation.

 

and one optional module

Digital Control, Design and Implementation

You develop your knowledge of digital circuit analysis and design as well as an understanding of digital control circuits/systems design methodology and implementation technology. You study a range of methods such as top-down design method, design automation framework and tools, VHDL modelling and rapid prototyping. You gain a technical competence and an appreciation of the capabilities and limitations of modern digital control circuits/systems design and implementation. You study through a series of lectures and labs, that are used to explain theory and discuss applications. Practical sessions involve the use of design tools, modelling of digital components and systems, circuit simulation and implementation.

Engineering Project Risk Management

This module enables you to understand: the principles and process of risk management, how to identify the sources of risk, quantification of the severity of identified risks, the options and opportunities involved in managing risk and the mitigation strategies required to reduce the effects of identified risks in the financial, safety and environmental aspects of a project. You will be introduced to Monte-Carlo simulation, Delphi Techniques, Ishikawa – cause and effect diagrams, decision trees, programme evaluation review technique (PERT), using risk registers and risk management software.

Lectures introduce you to key concepts, models and theories of risk management. Tutorials provide individual support and involve group discussions focusing on opportunities for introducing risk management techniques in the financial, environmental and safety aspects of project management. Practical sessions include demonstrations of risk management software. Field visits take place where possible, where you undertake practical risk assessment/analysis gaining experience of applying mitigation methodology. The module is assessed by an in-course assessment.

Identification and Model Predictive Control

You study the methods and techniques associated with system identification, and how these techniques can be used in the formulation of adaptive and model based Control schemes. You consider the practical implementation of these control schemes during sessions supported by MatLab and SimuLink, which reinforce the lecture material and provide an opportunity for you to develop the required practical skills.

Robust Control Systems

In this module, you discuss the robust control problem. The module describes the Quantitative Feedback Theory (QFT) approach to robust control, and how to apply this to typical engineering problems. You then go on to discuss the use of expert systems/fuzzy logic solutions as an alternative.

 

Modules offered may vary.

How you learn

The objective of the programme is to produce graduates who possess a comprehensive knowledge and understanding of instrumentation and control engineering - and the skills and experience which allow them to analyse complex problems appropriate to instrumentation or control engineering.

The programme provides a number of contact teaching and assessment hours (lectures, tutorials, laboratories, projects, examinations). You are also expected to spend time on your own - this self-study time is to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time. In most cases, around 60 hours will be spent in lectures, tutorials and laboratories. The remaining learning time is for you to use to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 120 credits, so, during one year of full-time study you can expect to have 1,200 hours of learning and assessment.

One module in each year of your study involves a compulsory one-week block delivery period. This intensive problem-solving week, provides you with an opportunity to focus your attention on particular problems and enhance your team-working and employability skills.

How you are assessed

The learning and teaching strategy encourages a progressive acquisition of subject knowledge and skills by moving from study methods that have a greater degree of support and assistance gradually towards more independence and self-direction.

The programme assessment strategy tests subject knowledge, independent thought and skills acquisition and to provide the sort of information about graduates that will be useful to employers. The strategy is robust, equitable and manageable and incorporate both formative and summative assessment opportunities.

Your course will involve a range of types of assessment including coursework, group work, laboratory work and examinations.


Our Disability Services team helps students with additional needs resulting from disabilities such as sensory impairment or learning difficulties such as dyslexia
Find out more about our disability services

Find out more about financial support
Find out more about our course related costs

Work placement year

Teesside University's School of Science, Engineering & Design produces graduates with the problem-solving and leadership skills necessary to forge successful careers.

This programme allows you to spend one year learning and developing your skills through work experience. You will have a dedicated work placement officer and the University's award-winning careers service to assist you with applying for a placement. Advice is also available on job hunting and networking. Employers are often invited to our School to meet you and present you with opportunities for work placements.

By taking a work placement year you gain experience favoured by graduate recruiters and develop your technical skillset. You also obtain the transferable skills required in any professional environment. Transferable skills include communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure, and commercial awareness.

Throughout this programme, you get to know prospective employers and extend your professional network. An increasing number of employers view a placement as a year-long interview and as a result, placements are increasingly becoming an essential part of an organisation's pre-selection strategy in their graduate recruitment process.

Potential benefits from completing a work placement year include:

  • improved job prospects
  • enhanced employment skills and improved career progression opportunities
  • a higher starting salary than your full-time counterparts
  • a better degree classification
  • a richer CV
  • a year's salary before completing your degree
  • experience of workplace culture
  • the opportunity to design and base your final-year project within a working environment.



We encourage and support you in your search and application for a work placement. If you are unable to secure a work placement with an employer, then you simply continue on a course without the work placement.

Career opportunities

Instrumentation and control graduates can be involved in activities such as:

  • designing and maintaining multimillion-pound chemical plants and manufacturing plants
  • developing advanced measurement and control systems
  • environmental analysis and monitoring.

They contribute to almost every area of modern manufacturing, service and financial industries. Graduates from this programme have found employment worldwide in a range of industrial and contracting companies including ABB, BASF, BNFL, Honeywell, Tioxide, Kavaerner, Sabic and Huntsman.

Entry requirements

Your offer will be made on the basis of your UCAS application and, if appropriate, your interview.

Year 1 entry
UCAS tariff points: 112-128 UCAS tariff points from any combination of recognised Level 3 qualifications including mathematics and physics. Alternative subjects to physics can be considered - for example, electronics, engineering, technology, mechanical principles.

GCE and VCE Advanced Level
At least two GCE/VCE A-Levels including grade B in mathematics and physics

Edexcel/BTEC National Extended Diploma
Distinction, Distinction, Merit in an appropriate discipline including distinction in further mathematics and physics

Access to HE Diploma
Merit in at least 24 Level 3 credits including mathematics and physics

Scottish Advanced Highers
Grade C in higher level mathematics and physics

Irish Leaving Certificate
At least five subjects studied at higher level, including grade A (H1 if awarded after 2016) in mathematics and physics

International Baccalaureate
Award of International Baccalaureate including 5 in higher level mathematics and physics

If the qualification for which you are studying isn’t listed, please contact our admissions team for advice on eligibility.

Interviews
Eligible applicants are normally invited for interview. The interview is to determine each applicant’s potential to succeed and to help us set appropriate entry conditions matched to personal circumstances and the demands of the course. The interview also enables you to see our excellent facilities, meet staff and students, and to learn more about studying at Teesside University.

We encourage all applicants to attend an interview, but if you are unable to attend an interview we may consider your application based on your UCAS application alone. Online or skype interviews may be possible in some cases.

English language and maths requirement
You are expected to have at least Level 2 literacy and numeracy skills. Typically, GCSEs in English language and mathematics at grade 4, or passes in Level 2 Functional Skills.

Non-EU international students who need a student visa to study in the UK should check our web pages on UKVI-compliant English language requirements. The University also provides pre-sessional English language courses to help you meet the English language requirements.

Helping you meet the entry requirements
We may be able to help you meet the requirements for admission by offering you the opportunity to study one or more Summer University modules, some of which can be studied by distance learning.

Alternative degree routes
If you are unable to achieve the minimum admission requirements for Year 1 entry you could, subject to eligibility, join one of our BEng (Hons) degree courses.

Direct entry to later years
Applicants with previous study and qualified to BTEC Higher National Certificate (HNC) or BTEC Higher National Diploma (HND) level, or equivalent, may request direct entry to Year 2 of this degree. You will be required to provide a full detailed transcript of your previous studies with your application to enable us to determine your eligibility for advanced entry.

For additional information please see the entry requirements in our admissions section

International applicants can find out what qualifications they need by visiting Your Country


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

What is KIS?

How to understand the Key Information Set

Course information

Full-time

  • Length: 5 years (including a work placement year)

More full-time details

Part-time

  • Not available part-time

Contact details

Further information