Skip to main content
Undergraduate study
Electrical and Electronic Engineering with Industry (with Foundation Year)

Electrical and Electronic Engineering with Industry (with Foundation Year)
BEng (Hons)

H696 BEng/EEIFY

 
 

Course overview

This degree includes an integrated foundation year for you if you do not have the appropriate subjects and/or grades for direct entry to year 1 of the degree. The foundation year helps you develop your knowledge in mathematics and other important subjects to enable you to proceed confidently through the remainder of the programme.

If you have non-standard qualifications, or have been away from education for some time, this programme is a great alternative route into higher education. Electronic intelligence is found in virtually all household and industrial equipment. Modern life relies heavily on electrics and electronics, which means electrical and electronic engineering graduates are in great demand, so completing this degree gives you great career prospects.

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partly meeting the academic requirement for registration as a Chartered Engineer.

 

Course details

In the foundation year (Year 0) you study a range of mathematics and fundamental science and engineering subjects, and you develop important practical laboratory skills to prepare you for the remainder of your programme. The content of the remaining years of this programme is identical to the content of our BEng (Hons) Electrical and Electronic Engineering degree.

The foundation year of this programme is sufficiently broad in content to provide you with the flexibility to change degree subjects after you successfully complete the foundation year.

If your ultimate aim is to graduate with a master’s degree rather than a BEng degree, after successfully completing the foundation year, and providing you achieve excellent grades, you would have the option of joining one of our integrated master’s degrees leading to the award of an MEng (Hons) degree.

Course structure

Year 0 (foundation year) core modules

Engineering in Practice

This module supports you to use knowledge that you already possess and combine it with engineering knowledge gained through teaching and learning, experimentation, analysis and reflection. Problem-based learning and project-based learning provides core methodologies in the teaching and learning strategy. You are introduced to concepts, techniques and equipment in a guided programme of teaching that uses foundational study skills to think about new concepts, promote ideas development and introduce project management techniques. This culminates in an objective, written review of progress and development though the module and a reflective assessment of personal development.

Engineering Principles

You gain an introduction to engineering physical, thermal, fluid, electrical and mechanical systems in engineering and the scientific laws and principles that govern them. You are prepared for further studies involving these principles of engineering science.

The module is delivered in combined lecture/problem solving tutorial sessions. Laboratory practical sessions support the learning objectives. The problem solving tutorials and the practical sessions enhance the understanding of principles.

Engineering the Future

You are introduced to the importance of design, modelling and simulation in engineering context. You explore the design process and how it is applied in a holistic way. Design ideas are communicated using a number of techniques including sketching and formal engineering drawing, design calculations and written commentary. The technical aspects of engineering design such as manufacturing drawing, modelling, rapid prototyping are introduced.

Global Grand Challenges

This module focuses on how science can help address some of the biggest global Grand Challenges that face society. This reflects the University’s focus on externally facing research that makes a real, practical difference to the lives of people and the success of businesses and economies.

You work on a project in a group, to enabling you to develop innovative answers to some of the biggest issues of our time based on five thematic areas – health and wellbeing, resilient and secure societies, digital and creative economy, sustainable environments and learning for the 21st century.

Materials Science

You gain foundational knowledge of important properties of engineering materials and learn engineering project-based research methods within a guided group learning context.

Flipped learning introduces you to material properties of the four basic categories of engineering materials. Tutorial sessions and group exercises highlight the factors affecting the material usage and sustainability for engineering applications. Practical sessions allow you to explore variables within material recycling methodologies.

Mathematics in Engineering

You are introduced to mathematical notation and techniques. The emphasis is on developing the skills that enable you to analyse and solve engineering problems. Topics studied include algebraic manipulation and equations, trigonometry, trigonometric functions and an introduction to descriptive statistics.

The module is delivered during combined lecture/tutorial sessions. Worked examples illustrate how each mathematical technique is applied. Problem solving tutorial exercises give you the opportunity to practice each skills or techniques.

 

Year 1 core modules

Electrical Principles

You are introduced to the fundamentals of electrical circuit theory and how to apply this to analyse simple electric circuits. You are also introduced to a range of standard electrical circuits and how these may be applied in engineering problems. You attend a series of weekly lectures to learn the theory, discuss applications and for solving simplified illustrative examples. You also attend practical sessions to reinforce the lecture material and develop practical electrical skills.

Electronic Principles

This module gives you a basic understanding of the physical fundamentals used in electrical engineering, together with specific techniques you need to determine the behaviour of electric circuits.

We cover the fundamentals of electrical circuit theory, analysis of electrical circuits, give you an understanding of simple analogue and digital circuits and an appreciation of their application to engineering problems.

We look at voltage, current, power, energy, resistance and impedance. Also magnetic fields and inductance, electric fields and capacitance, Kirchhoff’s Laws. We examine time varying voltages and currents, effects on inductors and capacitors, sinusoidal voltage and current use of symbolic notation.

You also study power, reactive power and apparent power, circuit analysis techniques, mesh and nodal analysis, transistors and properties of amplifiers.

Our primary method of teaching is lectures supported by laboratory sessions, tutorials, problem solving and directed learning.

You learn how to:

  • understand and use key elements of electrical and electronic theory
  • apply given tools in the solution of well defined electrical and electronic engineering problems
  • apply numerical skills to simple electrical and electronic engineering problems
  • use basic IT tools and specialist software to solve simple electrical and electronic engineering problems.

Engineering Mathematics

This module introduces the range of mathematical skills that are relevant to an engineering degree. You revisit and develop your knowledge of the fundamentals of algebra, trigonometry and basic statistics. The central ideas of vectors, matrices, complex numbers, and differential and integral calculus are also examined.

Throughout the module you develop a range of mathematical skills and techniques fundamental to the solution of engineering problems. You also advance your skills in selecting and applying mathematical techniques.

This module is delivered through a combination of lectures and tutorial sessions.

Engineering Practice

You develop and enhance the practical, professional and electrical engineering skills necessary for success in both the academic and work environment. There is a significant practical element which enables you to develop your knowledge, confidence and the fundamental principles of electrical engineering design methods and laboratory practice. You are also introduced to the skills required to improve opportunities in career selection and development through exposure to a range of on-campus services and external professional bodies.

The practical sessions include: health and safety, equipment selection, component selection, circuit construction, measuring instruments, testing and fault diagnosis.

Physics and Instrumentation

This module provides you with an introduction to instrumentation, through studying the principles and characteristics of measurement systems and elements, and their underlying physical principles.

On successful completion of this module, you will be able to:

  • gather record, describe and evaluate sensor and system data from a variety of sources
  • demonstrate practical ability in carrying out experimental physical measurements, within defined contexts in areas relevant to physics and instrumentation
  • present written evidence to demonstrate understanding of experimental investigation of underlying physical principles of measurement sensors and systems.

You will be assessed on an exam, system design exercise and laboratory report.

PLCs and Embedded Systems

You focus on the implementation of systems for both programmable logic controllers (PLCs) and embedded systems. PLCs are used to explain theory, to discuss applications and to cover practical aspects of programmable logic controllers and lead to the design of a control system for an industrial process. Embedded systems are explained by using their industrial applications and practical programming applications using a microcontroller-based system. You work in teams to solve an industrially-relevant real-time embedded system application.

 

Year 2 core modules

Analogue Circuit Analysis

This module introduces communications principles and communications systems, including signal analysis and noise.

You develop an understanding of communications principles and transmission systems. From studying a range of elementary methods such as analogue communications, transmission media and signal analysis, you gain a technical overview and an appreciation of the capabilities and limitations of communications principles.

DC Machines and Control

You are introduced to time-domain and frequency-domain representations of engineering systems. You consider: modelling and simulation, first and second order systems, frequency response, poles and zeros, and concepts of control. The second half of the module provides an introduction to electrical drive systems, and covers the principles of torque production in electro-mechanical devices, operation of power electronic converters and open-loop speed control of DC drive systems.

Digital Electronics Design

In this group project module you work in teams to solve an industrially relevant digital electronics design problem. Through your project work you develop employability skills such as project management, work presentation, research and commercial awareness. You become more adept at technical problem solving.

You investigate digital electronics and are introduced to digital electronics design techniques, and their application to real problems.

Electrical Engineering

This module introduces electrical power systems, including balanced/unbalanced three-phase systems, transformers, and transmission lines.
Practical sessions involve the use of laboratory setups and software packages (Pspice & Matlab) for the analysis of power system component characteristics. Tutorials will involve guided exercises and practical tasks incorporating examples of current industry practice.

Industrial Communications

The module encompasses the theoretical and practical aspects of modern digital and industrial communications systems and protocols. The module provides the principles of the design, analysis and practical implementation and industrial use of digital, serial, wired and wireless communication systems. The module also introduces practical industrial communication protocols and information management systems.

Integral Transforms and Matrices

You deepen your mathematical knowledge in key areas to use in a number of techniques to solve problems that arise in engineering domains. You develop competence in identifying the most appropriate method to solve a problem and its application.

You are introduced to the techniques and principles, and you are provided with problems that develop your competency in applying these techniques. You are shown how to implement numerical methods using software techniques.

 

Year 3 work placement

Final-year core modules

AC Drives and Control

This module provides an introduction to AC electrical machines such as induction and synchronous. Machine performance and operation characteristics are investigated in-depth in both analytical and experimental methods. The module provides you with the capability to analyse and design power electronic converters and to integrate them in AC electric drive systems.

Electronics

To extend the depth of your understanding of analogue electronics, especially in the context of integrated circuits, this module covers the interaction of circuit segments (loading), temperature dependence and device variability, and how to robustly design around these problems.

You use the ‘library’ of common configurations to build larger circuits and to see how integration and component matching facilitates complex general and application-specific circuits, with examples drawn from the variety of analogue devices currently available.

Laboratories enable you to perform analysis, simulation and synthesis of relevant circuit configurations, both using components on Breadboard and by simulation in SPICE.

Modelling and Control of Power Electronic Devices

This module provides an introduction to power electronic devices, power electronic converters and their application to switched-mode power converters and other power electronic applications. The module also considers the principles of modelling and control of switch mode power converters.

Power Systems

This module presents methods of power system analysis to give you a sound understanding of a broad range of topics related to power system engineering.

You study operation and design, and the economics of high voltage generation and transformation systems.

Frequency and voltage control, and transient schemes are covered for both normal and fault conditions.

Lectures offer explanations of principles and discussion of applications. Tutorials provide guided exercises. You take part in a series of practical classes designed to reinforce the theory you have learnt. You also take part in a series of practical sessions, utilising a range of electrical power systems, laboratory equipment and industry standard software to analyse power systems.

Project

This module extends the development of independent learning skills by allowing you to investigate an area of engineering or technology for an extended period.

You receive training in writing technical reports for knowledgeable readers and you produce a report or dissertation of the work covered. In addition, you give an oral presentation, a poster presentation or both. The topic can be in the form of a research project or a design project.

You develop key skills in research, knowledge application and creation through keynote lectures where appropriate and self-managed independent study. Support is provided through regular tutorial sessions.

 

Modules offered may vary.

 

How you learn

You are expected to attend a range of lectures and problem-solving tutorials. You also use laboratory work widely to underpin the engineering principles studied. A series of laboratory-based activities provides a practical introduction to a range of engineering disciplines.

The programme provides a number of contact teaching and assessment hours (lectures, tutorials, laboratories, projects, examinations). You are also expected to spend time on your own - this self-study time is to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time. In most cases, around 60 hours will be spent in lectures, tutorials and laboratories. The remaining learning time is for you to use to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 120 credits, so, during one year of full-time study you can expect to have 1,200 hours of learning and assessment.

Some of your modules involve a compulsory one-week block delivery period. This intensive problem-solving week, provides you with an opportunity to focus your attention on particular problems and enhance your team-working and employability skills.

How you are assessed

Your programme involves a range of types of assessment including coursework assignments, laboratory work, presentations and tests. You also work in teams on design project, and in the final year you complete a major individual project, including a poster presentation and project report.


Our Disability Services team provide an inclusive and empowering learning environment and have specialist staff to support disabled students access any additional tailored resources needed. If you have a specific learning difficulty, mental health condition, autism, sensory impairment, chronic health condition or any other disability please contact a Disability Services as early as possible.
Find out more about our disability services

Find out more about financial support
Find out more about our course related costs

 
 

Entry requirements

Entry requirements

Typical UCAS tariff based offers are 32-88 tariff points. Non-tariff qualifications are also considered. The level of the tariff point offer depends on the subjects that you have studied.

You are expected to have to have at least Level 2 literacy and numeracy skills. GCSE grade 4 (or C) or a pass in Level 2 functional skills are acceptable.

If you are unsure your qualifications are eligible for admission, please contact our admissions office for advice.

Entry requirements are provided for guidance only. We offer entrance interviews which help us determine your eligibility for your chosen degree.

Eligible applicants are normally invited for interview before an offer is made. The interview is to determine your potential to succeed and to help us set appropriate entry conditions matched to personal circumstances and the demands of the course. The interview also enables you to see our excellent facilities, meet staff and students, and to learn more about studying at Teesside University.

We encourage all applicants to attend an interview, but if you are unable to attend an interview we may consider your application based on your UCAS application alone. Online or skype interviews may be possible in some cases.

Non-EU international students who require a student visa to study in the UK must meet, in addition to the academic requirements, the UKVI compliant English language requirement. Please check our international student pages for further information.

For additional information please see our entry requirements

International applicants can find out what qualifications they need by visiting Your Country


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

 

Employability

Work placement year

This programme allows you to spend one year learning and developing your skills through work experience. You have a dedicated work placement officer and the University's award-winning careers service to assist you with applying for a placement. Advice is also available on job hunting and networking.

By taking a work placement year you gain experience favoured by graduate recruiters and develop your technical skillset. You also obtain the transferable skills required in any professional environment. Transferable skills include communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure, and commercial awareness.

An increasing number of employers view a placement as a year-long interview and as a result, placements are increasingly becoming an essential part of an organisation's pre-selection strategy in their graduate recruitment process.

Potential benefits from completing a work placement year include:

  • improved job prospects
  • enhanced employment skills and improved career progression opportunities
  • a higher starting salary
  • a better degree classification
  • a richer CV
  • a year's salary before completing your degree
  • experience of workplace culture
  • the opportunity to design and base your final-year project within a working environment.

We encourage and support you in your search and application for a work placement. If you are unable to secure a work placement with an employer, then you simply continue on a course without the work placement.

Career opportunities

Electrical and electronic engineers find employment in almost every area of modern manufacturing, service and financial industries. These sectors include aerospace, banking and financial, communications, power generation, manufacturing and process, research and development and many others.

Working as an electrical engineer.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:

  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student adviser

 
 

Full-time

Entry to 2020/21 academic year

Fee for UK/EU applicants
£9,250 a year

More details about our fees

Fee for international applicants
£13,000 a year

More details about our fees for international applicants


What is included in your tuition fee?

  • Length: 5 years (with a foundation year)
  • UCAS code: H696 BEng/EEIFY
  • Semester dates
  • Typical offer: Offers tailored to individual circumstances

Apply online (full-time) through UCAS

 

Part-time

  • Not available part-time
 
  • Facilities
     
  • News

    Darren Bethal, Ethan Hill and Phil Manley.. Link to View the pictures. Engineering students help to improve onsite safety
    Two final year engineering students have lent their expertise to a large oil and gas operations company – helping to shore up safety procedures and save on resources.

    Read the full story

     
 
 
 

Facilities

A tour of Teesside University engineering facilities and employer partnerships, enabling us to produce graduates ready for the world of work.

 

Choose Teesside

iPad

Are you eligible for an iPad, keyboard and £300 credit for learning resources?

 

Accommodation

Live in affordable accommodation right on-campus

 

Campus

Study in our town-centre campus with over £270m of recent investment

 

Industry ready

Benefit from work placements, live projects, accredited courses

 

Get in touch