Skip to main content
Undergraduate study
Engineering & Construction

Embedded Electronic Systems Design and Development Engineer Degree Apprenticeship

This degree apprenticeship is suitable for learners who are in employment and you as the employer is willing to support their professional development as an embedded electronic systems design and development engineer.

 

Professional apprenticeship
Linked Level 6 University award: BEng (Hons) Electrical and Electronic Engineering

 

Course overview

Accredited

Successful completion of this programme includes the award of BEng (Hons) Electrical and Electronic Engineering. Your training manager can advise the apprentice if this is the right route and if you as the employer is prepared to support them.

Please refer to the embedded electronic systems design and development engineer degree apprenticeship standard for further information. If the learner is seeking to study part-time, financed by other means (self-funded or using a student loan) then please visit the course information page for BEng (Hons) Electrical and Electronic Engineering for a link to an online application form for part-time study.

Please note, we can only respond to enquiries from employers, or individuals with agreement from their employer to undertake an apprenticeship.

Download pdf Order prospectus

 

Course details

Achievement of the formal qualifications is part of a broader audit-based end-point employer endorsement with a rigorous interview/viva, which incorporates a detailed occupational development record and portfolio of evidence.

Course structure

Level 4 modules

Electrical Principles

This module gives you a basic understanding of the physical fundamentals used in electrical engineering, together with specific techniques you need to determine the behaviour of electric circuits.

We cover the fundamentals of electrical circuit theory, analysis of electrical circuits, give you an understanding of simple analogue and digital circuits and an appreciation of their application to engineering problems.

We look at voltage, current, power, energy, resistance and impedance. Also magnetic fields and inductance, electric fields and capacitance, Kirchhoff’s Laws. We examine time varying voltages and currents, effects on inductors and capacitors, sinusoidal voltage and current use of symbolic notation.

You also study power, reactive power and apparent power, circuit analysis techniques, mesh and nodal analysis, transistors and properties of amplifiers.

Our primary method of teaching is lectures supported by laboratory sessions, tutorials, problem solving and directed learning.

You learn how to:

  • understand and use key elements of electrical and electronic theory
  • apply given tools in the solution of well defined electrical and electronic engineering problems
  • apply numerical skills to simple electrical and electronic engineering problems
  • use basic IT tools and specialist software to solve simple electrical and electronic engineering problems.

Electronic Principles

You develop an understanding of digital and analogue electronics. And focus on important components, operations and circuits. You explore theoretical principles and conduct laboratory exercises using expert equipment.

This is a 20-credit module.

Engineering Mathematics

This module introduces the range of mathematical skills that are relevant to an engineering degree. You revisit and develop your knowledge of the fundamentals of algebra, trigonometry and basic statistics. The central ideas of vectors, matrices, complex numbers, and differential and integral calculus are also examined.

Throughout the module you develop a range of mathematical skills and techniques fundamental to the solution of engineering problems. You also advance your skills in selecting and applying mathematical techniques.

This module is delivered through a combination of lectures and tutorial sessions.

Engineering Practice

You develop and enhance the practical, professional and electrical engineering skills necessary for success in both the academic and work environment. There is a significant practical element which enables you to develop your knowledge, confidence and the fundamental principles of electrical engineering design methods and laboratory practice. You are also introduced to the skills required to improve opportunities in career selection and development through exposure to a range of on-campus services and external professional bodies.

The practical sessions include: health and safety, equipment selection, component selection, circuit construction, measuring instruments, testing and fault diagnosis.

Physics and Instrumentation

This module provides you with an introduction to instrumentation, through studying the principles and characteristics of measurement systems and elements, and their underlying physical principles.

On successful completion of this module, you will be able to:

  • gather record, describe and evaluate sensor and system data from a variety of sources
  • demonstrate practical ability in carrying out experimental physical measurements, within defined contexts in areas relevant to physics and instrumentation
  • present written evidence to demonstrate understanding of experimental investigation of underlying physical principles of measurement sensors and systems.

You will be assessed on an exam, system design exercise and laboratory report.

PLCs and Embedded Systems

You focus on the implementation of systems for both programmable logic controllers (PLCs) and embedded systems. PLCs are used to explain theory, to discuss applications and to cover practical aspects of programmable logic controllers and lead to the design of a control system for an industrial process. Embedded systems are explained by using their industrial applications and practical programming applications using a microcontroller-based system. You work in teams to solve an industrially-relevant real-time embedded system application.

 

Level 5 modules

Digital Electronics Design

In this group project module you work in teams to solve an industrially relevant digital electronics design problem. Through your project work you develop employability skills such as project management, work presentation, research and commercial awareness. You become more adept at technical problem solving.

You investigate digital electronics and are introduced to digital electronics design techniques, and their application to real problems.

Electrical Engineering

This module introduces electrical power systems, including balanced/unbalanced three-phase systems, transformers, and transmission lines.
Practical sessions involve the use of laboratory setups and software packages (Pspice & Matlab) for the analysis of power system component characteristics. Tutorials will involve guided exercises and practical tasks incorporating examples of current industry practice.

Industrial Communications

The module encompasses the theoretical and practical aspects of modern digital and industrial communications systems and protocols. The module provides the principles of the design, analysis and practical implementation and industrial use of digital, serial, wired and wireless communication systems. The module also introduces practical industrial communication protocols and information management systems.

Integral Transforms and Matrices

You deepen your mathematical knowledge in key areas to use in a number of techniques to solve problems that arise in engineering domains. You develop competence in identifying the most appropriate method to solve a problem and its application.

You are introduced to the techniques and principles, and you are provided with problems that develop your competency in applying these techniques. You are shown how to implement numerical methods using software techniques.

Machines

This module teaches principles and analysis of electrical machines. Machine performance and operation characteristics are investigated in-depth in both analytical and experimental methods. Students will develop analytical techniques for predicting device and system interaction characteristics as well as applications. Laboratory setups and software packages such as (Pspice & Matlab) will be used to model and analyse a typical machine performance and characteristics.

Problems used in the course are intended to strengthen understanding of the phenomena and interactions of electrical machine, and include examples from current research and industry practice.

Multidisciplinary Software and Systems

This module introduces C++ programming with an emphasis on the learning, development and application of algorithms and data structures within an engineering context. The students will be introduced to the basics of class-based object-oriented programming using the C++ language.

Students will be required to demonstrate conceptual understanding and practical competence of programming by designing and implementing solutions to specific programming problems.

The module is taught with lectures, labs and related practical work. Lectures will provide an explanation of theory and demonstrations of programming examples. Lab sessions will provide you an opportunity to develop programming skills through the use of practice exercises.

The module is assessed by a report midway through the course and a group programming task at the end of the module period.

 

Level 6 modules

Electric Drives

This module aims to provide students with the capability to analyse and design power electronic converters and to integrate them in DC and AC electric drive systems. The module is delivered through a combination of lectures, guided reading, laboratory sessions and tutorials. Demonstrations using modern experimental facilities will give the students the opportunity to explore converters’ operation in full and to gain a deep understanding of practical design constraints.

Problems used in the module are intended to strengthen understanding of the phenomena and interactions of electric drives, and include examples from current research and industry practice.

Industrial Electronics

This module introduces you to the fundamental of industrial electronics including power electronic devices, power electronic converters and their application to switched mode power supply and other power electronic applications. The module also considers the principles of modelling, analysis and design of industrial electronics circuits such as switch mode power supply.

The module will be delivered through a combination of lectures and practical sessions. Lectures will provide an explanation of principles and discussion of industrial electronics applications. Extensive use of appropriate software tools (such as MATLAB, PSpice) in the practical sessions will give you the opportunity to explore these principles in greater depth. The practical sessions will be used to design and analyses of the electronic circuits.

Power Systems

This module presents methods of power system analysis to give a sound understanding of a broad range of topics related to power system engineering. It includes studies on operation, design and economics of power generation, transmission/distribution systems. Frequency and voltage control, and protection schemes are covered for both normal and fault conditions.

The module is taught with lectures, for explanation of principles and discussion of applications, and seminars for guided exercises There are also a series of practical's utilising industry standard software for the analysis of power flow and fault levels which will incorporate examples of current industry practice.

This is a 20-credit module.

Project

This module extends the development of independent learning skills by allowing you to investigate an area of engineering or technology for an extended period.

You receive training in writing technical reports for knowledgeable readers and you produce a report or dissertation of the work covered. In addition, you give an oral presentation, a poster presentation or both. The topic can be in the form of a research project or a design project.

You develop key skills in research, knowledge application and creation through keynote lectures where appropriate and self-managed independent study. Support is provided through regular tutorial sessions.

Sustainable Systems and Industry 4.0

The emergence of Industry 4.0, often referred to as the fourth industrial revolution, has been attributed to advancing automation, decentralisation and system integration and cloud computing. In the cyber-physical environment, machines can communicate, collect information, and make informed decisions through artificial intelligence (AI), big data and industrial internet of things (IIoT). The evolution of Industry 4.0 has great potential to improve the energy, equipment, and human behaviour. At the same time, in the era of the so-called circular economy, industry across all sectors is under huge pressure to make their manufacturing operations ethical and sustainable. Therefore, we must learn to adopt or implement the latest Industry 4.0 technologies.

The term sustainability has a multi-disciplinary use and meaning. As future engineers you will learn sustainability is represented as the synergy between environment, economics, and society. In this module students specialising in Sustainable Systems and Industry 4.0 will focus their studies and deepen their knowledge in a range of sustainability themes such as energy management and power systems, sustainable water and wastewater systems, sustainable transportation technologies, transitions to sustainable food systems and mechanical manufacturing systems.

The subjects will be taught through a combination of lectures and seminars. Lectures will develop key concepts and knowledge. Seminars will allow more focused examinations of important issues and approaches

 

Modules offered may vary.

 

How you learn

The apprenticeship includes work-based elements and blended (on campus and online) learning.

Attendance is typically one day a week on campus. Online learning may be real-time or recorded. Real-time is preferred but recordings provided added flexibility for apprentices who may occasionally need to manage work commitments.

The University programmes provide a number of contact teaching and assessment hours (such as lectures, tutorials, lab work, projects, examinations), but the apprentice is also expected to undergo self-study time – to review lecture notes, prepare coursework assignments, work on projects and revise for assessments.

How you are assessed

The apprentice's learning involves different types of assessment including coursework assignments and exams.

The apprentice is provided with programme and module guides containing comprehensive information about their assessments. Assessment schedules allow them to manage their time more effectively and prepare for submission.

Our virtual learning environment plays a key role in the submission of coursework and assessment with some modules using online tests, blogs, journals and portfolios to support blended learning.

In addition to the on-programme assessment, completion of the apprenticeship is by end-point assessment which looks holistically at the Knowledge, Skills and Behaviours (KSBs) developed to determine if the requirements of the Standard have been met.

Please refer to the Embedded Electronic Systems Design and Development Engineer degree apprenticeship assessment plan


Our Disability Services team provide an inclusive and empowering learning environment and have specialist staff to support disabled students access any additional tailored resources needed. If you have a specific learning difficulty, mental health condition, autism, sensory impairment, chronic health condition or any other disability please contact a Disability Services as early as possible.
Find out more about our disability services

 

Entry requirements

How to apply

To be accepted on to a degree apprenticeship course you must have support from your employer and meet the course entry requirements.

Expressions of interest can be submitted to
SCEDTApprenticeships@tees.ac.uk

We will discuss eligibility with the apprentice and you as the employer and send a link to an online application form.

Entry requirements

To be accepted on to a degree apprenticeship course you must have support from your employer and meet the course entry requirements.

96 points from any combination of acceptable Level 3 qualifications, including maths.

Before starting their Teesside University apprenticeship, learners must hold Level 2 qualifications in English and maths. Find out more.

Accredited prior learning
Admission with advanced standing can be considered if the learner has studied at level 4 or higher (e.g. HNC) in a relevant subject.


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

 

Employability

Career opportunities

Degree apprenticeships combine work with studying for a work-based higher-education-level qualification, so the apprentice should already be in employment.

The apprentice gains technical knowledge and practical experience by combining on-the-job training with flexible study towards a higher education qualification.

Benefits for employers and apprentices

  • increasing future productivity
  • keeping the business up-to-date with the latest knowledge and innovative practice
  • delivering on-the-job training to employees tailored to business needs
  • apprentices can tackle skills shortages by filling higher level skill gaps
  • develop and retain existing staff by offering support and a fresh perspective
  • improve career prospects of employees.

 
 

Professional accreditation

The BEng (Hons) Electrical and Electronic Engineering degree is accredited by the Institution of Engineering and Technology (IET).

Professional apprenticeship

An apprenticeship combines vocational work-based learning with study for a university degree. Designed in partnership with employers, apprenticeships offer it all - a higher education qualification, a salary, and invaluable practical experience and employment skills.

Find out more

Full-time

  • Not available full-time
 

Part-time

2024/25 entry

Fee for UK applicants
£27,000

More details about our fees

  • Length: 4-6 years plus 6 months end-point assessment
  • Attendance: Block and online delivery
  • Start date: September

Enquire now

 
  • Student and graduate profiles
    Sadie Dickinson

    Sadie Dickinson

    Embedded Electronic Systems Design and Development Engineer, Degree Apprenticeship

    Sadie is combining study alongside work, with an apprenticeship at semiconductor manufacturer, PragmatiC.

    Meet Sadie

     
 
 

Get in touch

UK students

Email: apprenticeships@tees.ac.uk

Telephone: 01642 342648


Online chat (general enquiries)

 

Open days and events

Go to top menu