Skip to main content
Undergraduate study
Mechanical Engineering with Industry

Mechanical Engineering with Industry
MEng (Hons)

H305 MEng/MEI

 
 
 

Course overview

Teesside University offers a solid base of engineering knowledge and skills for a wide range of industries such as aerospace, robotics, automotive, marine, renewable energy, oil and gas, and process industries.

We have exceptional links with local engineering companies, allowing you to enhance your experience and employability.

Teesside is ranked 11th out of 67 institutions in the Guardian University Guide 2019 for Engineering: Mechanical.
Find out more

Professional accreditation

Our degree is accredited by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

This MEng fully meets the exemplifying academic benchmark requirements, for registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

 
 

Course details

Years 1, 2 and 3 of the MEng incorporate many of the modules on the BEng, but you study a wider range of modules, covering technical subject areas as well as developing management, leadership and entrepreneurship skills. There are significant practical hands-on elements, including group and individual projects.

Course structure

Year 1 core modules

Engineering Mathematics

This module introduces the range of mathematical skills that are relevant to an engineering degree. You revisit and develop your knowledge of the fundamentals of algebra, trigonometry and basic statistics. The central ideas of vectors, matrices, complex numbers, and differential and integral calculus are also examined.

Throughout the module you develop a range of mathematical skills and techniques fundamental to the solution of engineering problems. You also advance your skills in selecting and applying mathematical techniques.

This module is delivered through a combination of lectures and tutorial sessions.

Fluid Mechanics

Materials and Sustainability

This module provides you with a foundational knowledge of important properties of engineering materials, together with a hands-on appreciation of these through laboratory-based practical sessions.

Fundamental relationships between processing, structure, properties and performance will be explored to highlight factors that influence the suitability of materials for various engineering applications.

Mechanical Engineering Practice

Structural Mechanics

This module introduces common types of structure used in engineering, assesses the types of loads they must resist and provides you with the analytical skills necessary to design the components that make up the structure.

Specific areas of study include: basic concepts of force, stress and strain; properties of materials and sections; analysis of frames, beams and columns; equilibrium conditions and statical determinacy; beam bending movement, shear force and deflection; and lightweight cables.

Lectures will introduce each major topic on the module with tutorials used to practise calculations. Laboratory practicals are used to investigate the properties of construction materials and develop a deeper understanding of structural theory.

The module is assessed by in-course assignment and an examination, comprising calculations and short answer questions on the module indicative content.

Thermodynamics

You are introduced to the concepts of engineering thermodynamics and heat transfer. You look at the transfer of heat, energy for solids, liquids and gases. You explore the various mechanisms for this heat transfer, quantify these mechanisms and apply them to industrially important equipment, particularly heat exchangers. At the end of the course you will be able to design and analyse heat exchanger systems for a given duty. You look at the engineering thermodynamic properties of pure working fluids. You define, develop and apply a series of thermodynamics principles to solve engineering related problems of increasing difficulty. You explore derivation of the first and second laws of thermodynamic and apply it to real-world analysis of a range of heat-power cycles. You attend a series of preparatory lectures and tutorials.

 

Year 2 core modules

Aeroengines and Rocket Science

You look at the fundamental thermodynamics and operational characteristics of a range of engines and their components including gas turbines, jet engines, turbofans, turboshaft engines, ramjets, scramjets and rockets (which are used in aerospace applications) and torque power producing gas turbines (used in industrial and marine applications).

You explore the fundamental thermodynamics of engine operation, the equation for thrust calculations, Mach number, stagnation properties, shock waves, steady one dimensional flow, and analyses of flows through convergent and convergent-divergent nozzles. You learn how to calculate the performance and efficiencies of the engine and its components.

Components include burners and afterburners, compressors, turbine and nozzles. You also look at the calculation and analyses of flows through compressor and turbine blading stages, and fundamentals of rocket propulsion, trajectory analysis, and performance of solid and liquid rocket engines.

You attend a series of keynote lectures as well as problem-solving tutorials and practical investigations.

Applied Mathematical Methods

Group Design and Build Project

This is a group project module which is part of the group project theme running through the engineering programmes.
This module will provide you with the opportunity to work in teams in order to solve industrially relevant design problems. In the course of this module, you will develop employability skills such as project management, presentation of work, research and commercial awareness, all of which support problem solving in a technical context.

You learn to use theoretical principles in the practice of creating an engineered design item, through group working activities. A problem based learning approach is adopted and where appropriate, supporting lectures/ seminars will be delivered to include technical knowledge or skills development.

You are assessed through two in-course assignments.

Manufacturing Processes

This module provides you with an insight into current manufacturing processes, promoting a deep understanding of technological factors and an awareness of working principles and capabilities. Traditional methods, such as casting and rolling are examined, together with state-of-the-art practices, such as powder metallurgy. You combine a detailed study of selected manufacturing processes with hands-on experience in laboratory-based practical sessions.

You review important aspects of current thinking, such as quality, reliability, sustainability, lean manufacturing and the extensive use of computers in many areas, to ensure an informed picture of modern manufacturing. You also explore the suitability of manufacturing processes for applications, using a framework that recognises the interrelationships of (manufacturing) process, (artefact) function, shape, and materials.

Mechanics of Materials 1

Mechanics of Materials is a branch of mechanics that studies the relationships between the external loads applied to a deformable body and the intensity of internal forces acting within the body. The subject also involves calculating the deformations of the body, and it provided a study of the body’s stability when the body is subjected to external loadings.

This module examines the essential theories and fundamental principles of mechanics of materials, and develops your knowledge, skills, and ability to apply them in mechanical analysis and design.

Product and Assembly Design Modelling

In this module, you develop your skills and knowledge in applying 3-D solid modelling and surface modelling to product design, using industry standard software. You gain a thorough understanding of computer modeling, and how to apply these skills to design engineering components and products.

You model parts with flat and cylindrical type surfaces, as well as those with more complex curved surfaces. The ability to obtain the mass and other properties of models and create orthographic drawings from 3D models will be covered.

You gain a thorough understanding of both static and dynamic hierarchical assemblies and their value to industry, and learn how to produce ‘Bill of Materials’, undertake clearance and interference checks on mating parts, and Tolerance Analysis.

You acquire the ability to animate dynamic assemblies; you create joints and mechanisms to solve for kinematic motions, and you learn how to structure the models effectively and modify them as appropriate.

 

Year 3 work placement

Year 4 core modules

Automotive Vehicle Design and Analysis

Collaborative Group Project

Dynamics and Vibration

Integrated Masters Project

This module extends the development of independent learning skills by allowing the student to investigate an area of engineering for an extended period. The student will work independently or in a small team, but will produce individual work.

Training will be given in writing technical reports for knowledgeable readers and the student will produce a report/dissertation of the work covered. In addition, the student will give an oral presentation, poster presentation or both. The topic can be in the form of a research project or a design project. Key skills in research, knowledge application and creation will be developed through keynote lectures and self-managed independent study.

Mechanics of Materials 2

This module explores the advanced theory and the principles of the mechanics of materials, and applies them to the analysis of realistic engineering problems.

Specific areas of study include stress concentrations, inelastic deformation and residual stress under axial loading, torsion and bending, transverse shear, failure theory, design of beams and shafts, deflection of beams and shafts, design of columns, thick-walled cylinders and interference fits.

 

Final-year core modules

Continuum Mechanics

You develop a unifying, mathematically rigorous approach to mechanics. Through (Cartesian) tensors, you understand a universal framework of mechanical principles, which applies to all materials and integrates classical treatment of fluids and solids with more recent developments in rheology. This theoretical development is put into context through extensive use of examples drawn from “real world” applications.

Enterprising Leadership and Project Management

Enterprise is about spotting opportunities, creating new ideas and having the confidence and capabilities to turn these ideas into working realities. Entrepreneurship is about using enterprise to create new business and new businesses.

This module covers a range of topics related to enterprise, entrepreneurship and the development of an inspirational leader. The skills and knowledge needed to set up and operate an engineering business will be covered. You will review their current approach to leadership, developed in earlier modules and explore your own unique leadership style. You will obtain feedback on your leadership profile from your peers and discover new capabilities. They will clarify your own sense of purpose and learn practises for sustaining yourself, your teams and your organisations.

Lectures and seminars will provide core material and explore case studies. You will work in small facilitated groups during the seminar sessions where you will examine case studies in detail and develop business plans.

Integrated Masters Research Project

This module extends the development of independent learning skills by allowing the student to investigate an area of engineering for an extended period. The student will work independently or in a small team, but will produce individual work.

Training will be given in writing technical reports for knowledgeable readers and the student will produce a report/dissertation of the work covered. In addition, the student will give an oral presentation, poster presentation or both. The topic can be in the form of a research project or a design project. Key skills in research, knowledge application and creation will be developed through keynote lectures and self-managed independent study.

 

and two optional modules

Advanced Fluid Dynamics

This module covers incompressible and compressible aerodynamics applicable to flight of subsonic and supersonic aircraft, and introduces hypersonic flow applicable to re-entry vehicles.
The content of this module includes a revision of the fundamental fluid flow and thermodynamic governing equations, subsonic and supersonic around wings, flow through nozzles and diffusers, oblique shock waves and expansion waves, fundamentals of boundary layers, convective heat transfer, viscous high temperature flows, and experimental methods for hypersonic flows.
The module content will be delivered through the use of lectures, seminars, laboratory sessions, problem solving tutorials and IT laboratory sessions providing an opportunity to explore complex flows through the use of CFD codes.
Assessment will comprise of a laboratory report compiled from practical laboratory investigations and an end exam.

Finite Element Methods

You gain practical experience of commercially available finite element packages. The application of the method is demonstrated using a number of case studies, and you are encouraged to use the technique as an extension of your standard text books in solving design and manufacturing problems.

Machine Design

Manufacturing Systems

Manufacturing technology is of paramount importance, as no manufacturing industry can exist without it. Modern manufacturing technology entails a diverse range of disciplines and their interaction including Computer Aided Design and Manufacture, Materials, Processes, and Manufacturing Automation.

This module considers typical hardware and software involved with automated machinery and production processes: showing how machines can be integrated into flexible cells and flexible manufacturing systems and, when linked with appropriate production management software, into computer integrated manufacturing systems.

You extend your knowledge and skills within the context of the manufacturing industries, and gain practical experience in the specification, design, and build of an automated manufacturing system You are also introduced to the fundamental concepts for production, utilising lean manufacturing principles and practices and a detailed investigation of a topic of current engineering such as: computer-aided manufacturing, special topics in robotics, and lean/agile manufacturing.

Supply Chain Management

This module investigates a range of applied Quality Management techniques and has been designed to enable students to develop the skills necessary to apply these techniques to their own work environment. This module also examines the appropriate statistical techniques in Quality Control, Auditing, Supply Chain Management and a range of Accreditation Schemes including BRC, EFSIS, ISO, UKAS and Industry Standards. In course assessment (ICA) is via a 5000 words written piece of work, with a weighting of 100%.

 

Modules offered may vary.

 

How you learn

You must attend a range of lectures, tutorials and hands-on laboratory and practical sessions. You are also involved in group project work and, during Years 3 and 4, you undertake a substantial research-based individual project.

The programme provides a number of contact teaching and assessment hours (lectures, tutorials, laboratory work, projects, examinations) and you are expected to supplement this with self study, for example to review lecture notes and slides, read around the material using recommended texts, prepare coursework and assignments, work on projects and revise for assessments.

Each year of full-time study consists of modules totalling 120 credits. Each unit of credit corresponds to 10 hours of learning and assessment (contact hours plus self-study hours). This means that during one year of full-time study you can expect to have 1,200 hours of learning and assessment.

One module in each of your first three years of study involves a compulsory one-week block delivery period. This intensive problem-solving week, provides you with an opportunity to focus your attention on particular problems and enhance your team-working and employability skills.

How you are assessed

Your programme includes a range of assessments including coursework assignments, project reports and formal examinations.


Our Disability Services team provide an inclusive and empowering learning environment and have specialist staff to support disabled students access any additional tailored resources needed. If you have a specific learning difficulty, mental health condition, autism, sensory impairment, chronic health condition or any other disability please contact a Disability Services as early as possible.
Find out more about our disability services

Find out more about financial support
Find out more about our course related costs

 
 

Entry requirements

Entry requirements

Your offer will be made on the basis of your UCAS application and, if appropriate, your interview.

Year 1 entry
UCAS tariff points: 112-128 UCAS tariff points from any combination of recognised Level 3 qualifications including mathematics. The preferred second subject is physics, but alternative science, technology and engineering subjects are also acceptable.

Typical mandatory subject grades include:

GCE and VCE Advanced Level
At least two GCE/VCE A Levels including grade B in mathematics

Edexcel/BTEC National Extended Diploma
Distinction, Distinction, Merit in an appropriate discipline including distinction in further mathematics

Access to HE Diploma in Engineering
Merit in at least 24 Level 3 credits including mathematics

Scottish Advanced Highers
Grade C in higher level mathematics

Irish Leaving Certificate
At least five subjects studied at higher level, including grade A (H1 if awarded after 2016) in mathematics

International Baccalaureate
Award of IB, including 5 in higher level mathematics

If the qualification for which you are studying isn’t listed, please contact our admissions team for advice on eligibility.

Interviews
Eligible applicants are normally invited for interview. The interview is to determine each applicant’s potential to succeed and to help us set appropriate entry conditions matched to personal circumstances and the demands of the course. The interview also enables you to see our excellent facilities, meet staff and students, and to learn more about studying at Teesside University.

We encourage all applicants to attend an interview, but if you are unable to attend an interview we may consider your application based on your UCAS application alone. Online or skype interviews may be possible in some cases.

English language and maths requirement
You are expected to have at least Level 2 literacy and numeracy skills. Typically, GCSEs in English language and mathematics at grade 4, or passes in Level 2 Functional Skills.

Non-EU international students who need a student visa to study in the UK should check our web pages on UKVI-compliant English language requirements. The University also provides pre-sessional English language courses to help you meet the English language requirements.

Helping you meet the entry requirements
We may be able to help you meet the requirements for admission by offering you the opportunity to study one or more Summer University modules, some of which can be studied by distance learning.

Alternative degree routes
If you are unable to achieve the minimum admission requirements for Year 1 entry you could, subject to eligibility, join one of our BEng (Hons) degree courses.

Direct entry to later years
Applicants with previous study and qualified to BTEC Higher National Certificate (HNC) or BTEC Higher National Diploma (HND) level, or equivalent, may request direct entry to Year 2 of this degree. You will be required to provide a full detailed transcript of your previous studies with your application to enable us to determine your eligibility for advanced entry.

For additional information please see our entry requirements

International applicants can find out what qualifications they need by visiting Your Country


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

 

Employability

Work placement year

This programme allows you to spend one year learning and developing your skills through work experience. A work placement officer and the University’s careers service are available to help you with applying for a placement. Advice is also available on job hunting and networking.

By taking a work placement year you gain experience favoured by graduate recruiters and develop your technical skills. You also obtain the transferable skills required in any professional environment. Transferable skills include communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure, and commercial awareness.

An increasing number of employers view a placement as a year-long interview and as a result, placements are increasingly becoming an essential part of an organisation's pre-selection strategy in their graduate recruitment process.

Potential benefits from completing a work placement year include:

  • improved job prospects
  • enhanced employment skills and improved career progression opportunities
  • a higher starting salary than your full-time counterparts
  • a better degree classification
  • a richer CV
  • a year's salary before completing your degree
  • experience of workplace culture
  • the opportunity to design and base your final-year project within a working environment.



We encourage and support you in your search and application for a work placement. If you are unable to secure a work placement with an employer, then you simply continue on a course without the work placement.

Career opportunities

Graduate mechanical engineers can seek employment in almost every sector of industry, including: automotive, aerospace, manufacturing, marine, medical, rail, power, processing, chemical, oil and gas, and food production industries.

Below are some examples of mechanical engineering graduate destinations:
• Paul Metcalfe is working with Cummins as a design engineer
• Ashleigh Williams is working with K Home International Ltd (KHI) as a polydimethylsiloxane piping design engineer
• Martin Axon is working with Rolls Royce as a graduate engineer
• Kris Rickman-Gilyeat gained a placement with Ardmore Craig and Hiley Engineering, and later joined Tata Steel.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:

  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student adviser

 
 

Full-time

Entry to 2019/20 academic year

Fee for UK/EU applicants
£9,250 a year

The final year is discounted from £9,250 to £6,500

More details about our fees

Fee for international applicants
£11,825 a year

The final year is £12,045

More details about our fees for international applicants


What is included in your tuition fee?

  • Length: 5 years (including a work placement year)
  • UCAS code: H305 MEng/MEI
  • Semester dates
  • Typical offer: 112-128 tariff points

Apply online (full-time) through UCAS

 

Part-time

  • Not available part-time
 
  • Facilities
     
  • Student and graduate profiles
     
  • On video

    Mechanical engineering students – join the winning team

    Watch mechanical engineering students from Teesside University get a taste of life in the fast lane as they put a race car they have built through its paces.

     
  • News

    Teesside University graduate Tom Lingard, pictured centre, receiving his award. Link to View the pictures. Mechanical engineering graduate wins award recognition
    A Teesside University graduate’s innovative suggestion for a hybrid generator exhaust system to enhance efficiency in hybrid cars has been recognised in a national competition.

    Read the full story

     
 
 
 

Facilities

A tour of Teesside University engineering facilities and employer partnerships, enabling us to produce graduates ready for the world of work.

 

Choose Teesside

iPad

Are you eligible for an iPad, keyboard and £300 credit for learning resources?

 

Accommodation

Live in affordable accommodation right on-campus

 

Campus

Study in our town-centre campus with over £270m of recent investment

 

Industry ready

Benefit from work placements, live projects, accredited courses

 

Get in touch

 

Open days

 
 

16 November 2019
Undergraduate open day

Book now