Skip to main content
Undergraduate study
Biological Sciences (with Foundation Year)

Biological Sciences (with Foundation Year)
BSc (Hons)

 

Course overview

This extended degree course is ideal if you wish to study for a university degree but you don't have the necessary Level 3 qualifications required for direct admission. In the first year of the extended programme you enhance your knowledge in maths and the fundamentals of biological, chemical and physical sciences.You can complete an optional work placement year as part of this degree course at no extra cost.

Biological science covers everything from the complexities of the genetic code to ecosystems on land and in the oceans. You study modules as diverse as endocrinology, molecular ecology and environmental sustainability. Your broad study base is ideal for employment in a range of biology-related specialisms.In the first year of study you develop your knowledge in maths and the fundamentals of biological, chemical and physical sciences, together with material to help you develop numerical, communication, practical and learning skills. Successful completion of your first year enables you to proceed confidently on to the remainder of your degree course.You study at Teesside University’s main Middlesbrough campus, but during your degree you have the opportunity to gain valuable experience at the new National Horizons Centre at the University’s Darlington campus which is home to a range of state-of-the-art facilities. This £22m purpose-built biosciences research, education and training facility is a focal point for the growing regional biosciences community

Watch this short film about wildlife in Teesside from BBC Winterwatch.

 

Course details

The foundation year modules provide an excellent preparation for our science-based degree studies. You enhance your understanding of mathematics and science to prepare you for the remainder of your course.

The remaining years of this course are the same as the BSc (Hons) Biological Sciences degree.

Course structure

Year 0 (foundation year) core modules

Big Data

Big data – it’s a phrase that a lot of people would argue is overused, or at least not always used in the appropriate context. So what is it really? How is it made and how do we make sense of it?

In this module you learn how big data is not just abundant but a growing field in so many aspects of our society from policing and conservation to health and bioinformatics. You explore how groups and communities use and share big data to help keep themselves safe in disaster zones around the world. You begin to value the role data plays in helping to make sense of community relationships in society, from uncovering criminal networks, tracking disease outbreaks to developing a deeper understanding of our ecology.

Data might end up in a data-frame spreadsheet format but it doesn’t begin there. It is often created with people and animals engaging with each other and technology. You explore how search engines collate and store the data we need to help make predictions, enhance decision making, or simply to better understand society’s needs.

Chemical Science and the Environment

This module provides an overview of fundamental concepts in chemistry and their application in the context of environmental and life sciences

Chemistry is the study of the structure, properties and reactivity of elements and compounds, and plays a key role in all physical, life and applied sciences. The topics covered include the structure of the atom, the periodic table, chemical bonding, chemical reactivity, environmental science, biogeochemistry, pollution, green chemistry and climate change.

Experimental Methods for Life Science

This module is based around a series of laboratory sessions. The first sessions emphasise important foundation skills, such as how to work safely in a practical environment and how to properly document practical work. These are followed by a series of sessions based on your wider academic interests including the basics of microscopy, handling microorganisms, safe handling food, using volumetric glassware and investigating acid base titrations.

Global Grand Challenges

This module focuses on how science can help address some of the biggest global Grand Challenges that face society. This reflects the University’s focus on externally facing research that makes a real, practical difference to the lives of people and the success of businesses and economies.

You work on a project in a group, to enabling you to develop innovative answers to some of the biggest issues of our time based on five thematic areas – health and wellbeing, resilient and secure societies, digital and creative economy, sustainable environments and learning for the 21st century.

Life on Earth

You explore the diversity of life on earth and the concept of evolution. You consider Darwin’s theory of evolution through natural selection to demonstrate relationships between species, the principles of taxonomy and speciation, and how they relate to the evolutionary tree.

You are introduced to the physiological processes, cellular organisation, homeostasis, metabolism, growth, reproduction, response to stimuli and adaptation - all hallmarks of living organisms equipping diverse species to survive and thrive.

Life Science

This module focuses on the life sciences from a human perspective. While developing an understanding of human biology you explore the role of different but interconnected life science disciplines in modern life.

While reviewing life science from an interdisciplinary context, relatable to a variety of backgrounds, you examine the major human body systems – cardiovascular, respiratory, excretory, endocrine, nervous, digestive, skeletal and reproductive. This module enables you to appreciate how such knowledge is relevant to issues in health, disease and modern society.

 

Year 1 core modules

Anatomy and Physiology

You gain a basic knowledge of human body structure and to relate this knowledge to both the understanding of the mechanisms associated with the control and regulation of physiological processes of the major organs systems of the body. This will allow you to develop ability to apply, evaluate and interpret the knowledge to solve problems in the discipline. You also develop applied contexts of the knowledge such as the construction of biological profiles for human identification including sex, age at death, stature determination and biological affinity. The module will be delivered through lectures, computer- aided learning via interactive web-based activities and labs.

Animal and Plant Biology

This module focuses on multicellular organisms such as animals and plants to introduce physiology, population biology, ecology and the complexity of ecosystems. You gain a thorough introduction with the lecture series and develop these themes during seminars integrating discussion, problem solving and quantitative techniques.

Lectures and practical seminars are also an opportunity to comprehend the relevance of the biological processes introduced to our human societies. Learning is also supported by a field trip within the local area, a first-hand experience of animal and plant biological surveying in the natural environment.

Biochemistry and Chemical Science

You will develop an understanding of key concepts necessary to underpin subsequent studies in chemistry, biochemistry, biomedical sciences and molecular biology. Building of the underlying principles of chemistry is essential to understand complex biological systems. This module will introduce the fundamentals of chemistry and link them to the key biomolecules and biochemical processes which form the basis of life.

Biodiversity and Evolution

You study the concept of evolution and how it led to the development of biodiversity and the world we now inhabit. You discuss evolution by natural selection and our development from the common ancestor, along with the principles of taxonomy, speciation and the evolutionary tree to demonstrate relationships between species. We highlight the impact of modern molecular methods of taxonomy in the form of phylogenetics, particularly the discovery of the domain of archaea. We discuss the complex biodiversity of the microbial, plant and animal worlds and their importance in ecological balance for the earth, human kind and society in the form of conservation. Lectures and tutorial sessions provide an insight into the theoretical aspects of evolution and biodiversity, and you discuss and analyse problem-based exercises to affirm your theoretical knowledge.

Cell Biology

You increase your understanding of biological processes at the cellular level. You will explore eukaryotic cell architecture and function with a molecular and mammalian focus, and learn about cell division and the cell cycle, genetic organisation of cells, DNA replication and gene expression. Your exploration of these aspects of cell and molecular biology will be supported by a series of laboratory-based sessions.

Microbiology

You are introduced to a range of microscopic organisms including bacteria, viruses, fungi and protozoa, microbial cell structure and function, microbial growth, microbial diversity, and the importance of microbes in the environment, industry and human health.

 

Year 2 core modules

Bioreactors and Fermentation

This industry-linked module develops a broad understanding of bioprocesses and selecting appropriate bioreactors for selective products. This includes bioreactions, principles of microbial fermentation with specific examples (medium constituents, choice of feedstock, media preparation), fermentation conditions (examples, types, mode of operation of fermenters) and design of bioreactors. You discuss some fundamental products of aerobic and anaerobic fermentations with examples from biofuels, biosurfactants, enzymes, probiotics, pharmaceuticals and healthcare. You also discuss scaling up fermentation and waste minimisation issues.

Ecology and Biodiversity

You will explore ecology and how complex interactions shape the distribution and abundance patterns of species in the natural environment. You examine the ecology of populations and communities, and how the integration of powerful new molecular biology technologies can inform the study of ecology and ecological interactions. You also explore the underlying theories used to explain the observed spatial and temporal patterns of diversity observed and the measurements which can be used to quantify diversity.

These topics are aligned to current issues, enabling you to appreciate the environmental, ethical and socio-economic concerns raised by ecological studies. As part of this module, by sampling natural environments you will have the opportunity to develop your ecological fieldwork, laboratory and data interpretation skills.

Human Metabolism and Clinical Biochemistry

You gain a broad understanding of the human metabolism, endocrinology and clinical biochemistry. Metabolism, the chemical processes that occurs in living organisms, is examined in the context of carbohydrate and lipid metabolism, cellular respiration and metabolism of drugs. Endocrinology, the study of the physiological role of hormones, is covered in detail, including a review of the mechanisms underpinning hormone action, the roles of second messengers and endocrine system disorders. Enzyme kinetics and enzyme regulation is also a significant topic.

The module will also explore the methods used for the collection, measurement and analysis of clinical samples in the biomedical laboratory. You will also cover the principles and applications of clinical biochemistry investigations used in screening, diagnosis, treatment and monitoring of disease.

Immunology

You gain a solid foundation of the immune system and its role in protection against microorganisms and maintaining human health. You will learn about the functional organisation of the immune system, the immune cells and chemical mediators, antibodies, and cellular processes related to the innate and adaptive immune responses.

Molecular Biology and Bioinformatics

This module introduces you to a range of modern molecular biology concepts and techniques. General molecular biology, molecular biology of genetic diseases and the use of molecular biology for applications such as the production of recombinant proteins and biomedical science forensic applications will be addressed. The new age of molecular biology is underpinned by gene/genome sequencing, sequence analysis and sequence manipulation. You will be given a thorough introduction to the principles of sequence analysis and how these techniques have revolutionised all areas of molecular biology. Particular attention will be paid to the technique of PCR. The module will also introduce bioinformatics concepts around visualising and analysing DNA sequence data, as well as basic molecular data analysis. The module content will be delivered via a series of interactive lectures that will allow students to gain insight into the theoretical aspects of molecular biology and bioinformatics. A series of laboratory practical sessions will introduce the basic techniques that lie at the heart of modern molecular biology such as DNA purification, PCR, restriction digestion, nucleic acid analysis via agarose gels, and sequencing.

Practical Conservation

You are introduced to the complexity of biological conservation science using practical examples and case studies at local, national and international scales. You will learn about the co-existence of a variety of approaches, aims and justification under the same overarching term of conservation. You will have a thorough introduction of conservation biology and how this field informs practical conservation measure undertaken on the ground to preserve endangered species, biodiversity at large, ecosystems services and the natural environment. In addition to lectures, the learning is enhanced by seminars and field trips where different aspect of practical conservation will be studied and discussed.

 

Optional work placement year

Final-year core modules

Bioinformatics and Genomics

Modern biology became a data-driven science. The advent of the Next Generation Sequencing technologies started a new era in the study of genetics, revealing new insights into the pathophysiology that underpins the living organism's behaviour. The massive data that produced daily with low cost presents a significant challenge for data storage, analyses, and management solutions. Bioinformatics is a relatively new field that aims to address these challenges by constructing novel software for the analysis, the management and the interpretation of the vast amounts of biological data. This module covers the fundamental principles of genome analysis and bioinformatics. You will learn how to access publicly available biological resources and how to retrieve information about genomic, proteomic and transcriptomic sequences. You will use online and standalone tools to analyse big datasets to discover meaningful biological insights and will learn how to display the results appropriately. You also enhance your critical thinking by studying the literature and using scientific methodologies to interpret their findings. Apart from the theoretical sessions, the module includes practical exercises that involve the analysis of predefined datasets.

Biologics and Health Product Development

You will develop the necessary entrepreneurship skills to understand the process of business start-up and be introduced to the necessary tools to manage nutrition, medical, biotech and the health care sector ventures. You will gain an awareness of the real-world challenges associated with the launch of a healthcare product from laboratory bench to the bedside. You will learn to research the market for gaps, design a product to fill that unmet need, and develop a business plan.

Science Research Project

You complete an in-depth, independent investigation into a specialist aspect of your field of study. In your project you will bring together a range of practical and academic skills developed in previous years of study. Regardless of the nature of the project, this process acts as a capstone experience requiring analysis and critical evaluation of data as well as critical reflection on the potential risks, moral and ethical issues. This piece of work will involve a significant individual contribution on your part. You will be supported by the appointment of an academic staff member as your research supervisor. They will act as a mentor and guide you through the development and completion of your research project.

Finally, you will communicate your independent research by producing a research poster and journal article to allow you to develop essential skills which mirror professional practice when research is presented at scientific conferences and for publication.

 

and two optional modules

Biodiversity and Ecosystems

Natural ecosystems provide numerous benefits to humanity. Despite this knowledge, ever increasing pressure is being placed on ecosystems and many are under threat. In this module, you will explore how the benefits provided by ecosystems can be viewed as services and natural capital and, subsequently, how these concepts have been used to drive policies relating to biodiversity conservation. Through a series of case studies, you will examine the positive relationship between biodiversity and ecosystem function, the mechanisms which underpin this relationship and, consequently, the impact of biodiversity loss on ecosystem services. In addition, you will, also explore how human activities can be mitigated and made more sustainable.

Biogeography and Conservation

This module is ideal for you if you’re interested in the biogeographical distribution of species and how this information can inform conservation practices.

Biogeography, with its focus on the distribution of species at a range of scales, provides an important theoretical framework within which ecosystem services, and the increasing impact of human activity on global biodiversity and ecosystem functions, can be evaluated.

You explore the contribution of habitat destruction and fragmentation and invasive species to biodiversity losses. You examine underlying principles in biogeography, including the historical development of the discipline, and investigates how these principles can inform effective conservation practices targeted at preventing biodiversity losses. You explore how endangered species are characterised, the selection and design of conservation areas, and the legal and policy frameworks in place to support conservation efforts.

Biotherapeutics

Biotherapeutics are medicinal products derived from living organisms. This module looks at the role of a biologist in the upstream and downstream aspects of a typical bioprocess. You cover the molecular and cell biology techniques required during the upstream part of the process including selecting suitable production organisms, recombinant DNA technologies and synthetic biology. You cover the different fermentation strategies and how these relate to the product being manufactured, economics and sustainability of the process. You learn about controlling and monitoring the fermentation process using analytical methods and process analytical technology.

For the downstream processing aspects, you focus on the different separation and purification strategies used for isolating the target product. This module highlights the regulatory and quality management aspects that impact on a bioprocess at all of these stages, in particular the roles of good laboratory and manufacturing practice. You develop an understanding of the multidisciplinary nature of the bioprocessing industry and how a biologist is required to have an appreciation of the engineering, chemistry, economic and regulatory aspects of a bioprocess.

Medical Microbiology

You explore how modern clinical microbiology can be used to detect, diagnose and control infectious diseases. You extend your understanding of the molecular basis of microbial pathogenesis and it allows you to explore how modern molecular biology techniques have been employed to define the nature of host-pathogen interactions.

 

Modules offered may vary.

 

How you learn

This course aims to produce graduates who are competent in a range of knowledge, understanding, experience and practical skills appropriate to biological sciences.
You learn through a range of teaching and learning methods including:

  • lectures

  • tutorials

  • seminars and workshops (including oral presentations and poster sessions)

  • laboratory work

  • computer laboratory-based sessions

  • group projects

  • research projects.

You have contact teaching and assessment hours, but you are also expected to spend time on your own - self-study time - to review lecture notes, prepare coursework assignments, work on projects and revise for assessments. Each year of full-time study consists of modules totalling 120 credits and each unit of credit corresponds to 10 hours of learning and assessment (contact hours plus self-study hours). So, during one year of full-time study you can expect to have 1,200 hours of learning and assessment
Each programme and module is supported by a specific virtual learning environment (VLE) site.

How you are assessed

You may be assessed through:

  • formal exams including 'unseen' exams

  • laboratory reports

  • computer-based assessments

  • problem-solving exercises

  • data interpretation exercises

  • critical analysis of case studies

  • oral presentations and technical interviews

  • essays, literature surveys, evaluations and summaries

  • collaborative project work

  • preparation and display of posters

  • planning, conduct and reporting of project work

You will be provided with an assessment schedule providing details of the submission deadlines for summative assessments.
Your course involves a range of types of assessments including research assignments, laboratory work, presentations and tests.


Our Disability Services team provide an inclusive and empowering learning environment and have specialist staff to support disabled students access any additional tailored resources needed. If you have a specific learning difficulty, mental health condition, autism, sensory impairment, chronic health condition or any other disability please contact a Disability Services as early as possible.
Find out more about our disability services

Find out more about financial support
Find out more about our course related costs

 
 

Entry requirements

Entry requirements

Any Level 3 subject is acceptable for entry to this course.

Normally entry qualifications can be accumulated from:
• any combination of Level 3 qualifications (for example, A/AS levels, BTEC Certificates/Diplomas, Access to Higher Education courses)
• High School Certificate or Diploma with good grades completed after at least 12 years of primary and secondary education

English language and mathematics requirements
Normally, evidence of English language and mathematical skills equivalent to at least GCSE grade 4 will be required. We consider a wide range of English and maths qualifications alternative to GCSEs. Please contact our admissions staff for advice.

Non-EU international students who need a student visa to study in the UK should check our web pages on UKVI-compliant English language requirements. The University also provides pre-sessional English language courses if you do not meet the minimum English language requirement.

Applicant Days
If you receive an offer to study with us you may be invited to attend one of our Applicant Days. This is a great opportunity to learn more about studying at Teesside by exploring our campus, seeing our excellent facilities, meeting staff and students, and finding out more about your course.

The Applicant Day provides you with information, guidance and advice to help you make the right choice. Even if you have attended an Open Day we encourage you to attend the Applicant Day - we are confident you will find your visit a useful experience.

Alternative progression routes
If you are not eligible to join this course directly then we may be able to help you prepare for admission by studying appropriate pre-degree Summer University modules.
Please contact us to discuss the alternative progression routes available to you.

For additional information please see our entry requirements

International applicants can find out what qualifications they need by visiting Your Country


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

 

Employability

Career opportunities

Graduates are ideally suited to sectors including the food, water, pharmaceutical and biotechnological industries, as well as careers in environmental agencies, hospitals and government laboratories, teaching or postgraduate research.

Work placement

A work placement officer and the University's careers service are available to help you with applying for a placement. Advice is also available on job hunting and networking.

By taking a work placement year you gain experience favoured by graduate recruiters and develop your technical skillset. You also obtain the transferable skills required in any professional environment. Transferable skills may include communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure and commercial awareness.

An increasing number of employers view a placement as a year-long interview and as a result, placements are increasingly becoming an essential part of an organisation's preselection strategy in their graduate recruitment process.

Potential benefits from completing a work placement year include:

  • improved job prospects
  • enhanced employment skills and improved career progression opportunities
  • a higher starting salary than your full-time counterparts
  • a better degree classification
  • a richer CV
  • a year's salary before completing your degree
  • experience of workplace culture
  • the opportunity to design and base your final-year project within a working environment.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:

  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student enrolment adviser

 
 

Full-time

Entry to 2020/21 academic year

Fee for UK/EU applicants
£9,250 a year

More details about our fees

Fee for international applicants
£13,000 a year

More details about our fees for international applicants


What is included in your tuition fee?

  • Length: 4 years (including a foundation year) or 5 years (including a work placement)
  • UCAS code: C101 BSc/BioSFY
  • Enrolment date: September
  • Semester dates
  • Typical offer: Offers tailored to individual circumstances

Apply online (full-time) through UCAS

 

Part-time

  • Not available part-time
 
  • On video

    National Horizons Centre

    The NHC is a £22m research, teaching and training facility which addresses the growth needs of the bio-based industries set to transform the UK economy, including biologics, industrial biotechnology and bio-pharmaceuticals.

     
 
 

Choose Teesside

iPad

Are you eligible for an iPad, keyboard and up to £300 credit for learning resources?

 

Accommodation

Live in affordable accommodation right on-campus

 

Campus

Study in our town-centre campus with over £270m of recent investment

 

Industry ready

Benefit from work placements, live projects, accredited courses

 

Get in touch