Skip to main content
Undergraduate study
 
 

Course overview

Pharmaceutical science takes a multidisciplinary approach to studying medicines. This course gives you a strong base in chemistry, biochemistry and biological science, preparing you for work in the pharmaceutical industry.

You can complete an optional work placement year as part of this degree course at no extra cost.

You develop an understanding of the physicochemical and biological principles that underpin the design, function, synthesis, analysis and delivery of pharmaceutical substances. Throughout this course we also help you develop the technical, practical and professional skills that employers value, and you have access to state-of-the-art laboratories and equipment for laboratory training.

You study at Teesside University’s main Middlesbrough campus, but during your degree you will have the opportunity to gain valuable experience at the new National Horizons Centre at the University’s Darlington campus which is home to a range of state-of-the-art facilities. This £22m purpose-built biosciences research, education and training facility is a focal point for the growing regional biosciences community.

 

Course details

Course structure

Year 1 core modules

Biochemistry and Chemical Science

You will develop an understanding of key concepts necessary to underpin subsequent studies in chemistry, biochemistry, biomedical sciences and molecular biology. Building of the underlying principles of chemistry is essential to understand complex biological systems. This module will introduce the fundamentals of chemistry and link them to the key biomolecules and biochemical processes which form the basis of life.

Cell Biology

You increase your understanding of biological processes at the cellular level. You will explore eukaryotic cell architecture and function with a molecular and mammalian focus, and learn about cell division and the cell cycle, genetic organisation of cells, DNA replication and gene expression. Your exploration of these aspects of cell and molecular biology will be supported by a series of laboratory-based sessions.

Chemical and Biochemical Reactivity

In this module you will take a close look at the basic ideas of kinetics and thermodynamics and explore how they apply to biochemical reactions, in particular to the function of enzymes. You will study the chemistry of the transition metals and consider some of their roles in proteins and pharmaceuticals.

Introduction to Organic Chemistry

You are introduced to the creative science of organic chemistry which mainly looks at molecules composed of, but not limited to, carbon and hydrogen. You will learn the principles of chemical reactivity and mechanisms necessary to understand how and why simple molecules as well as macromolecules react in a certain way. Additionally, you will learn the key concepts in synthetic organic chemistry that will enable you to develop an exquisite control over structure and reactivity with no limit on what molecules you can synthesise.

Structure and Bonding

This module will introduce basic concepts in chemistry related to structure and bonding. Topics include; atomic structure, quantum mechanics, chemical bonding, spectroscopy (UV, NMR, IR), inorganic chemistry (metals and main group) and introduction to symmetry.

Synthetic Laboratory Skills

You learn and practice the core skills of the chemical scientist in this module. From basic laboratory manipulations, separations and purifications to the synthesis and analysis of biomolecules and pharmaceuticals, you will become familiar with a range of laboratory and data skills that will underpin your practical work throughout your degree.

 

Year 2 core modules

Bioreactors and Fermentation

This industry-linked module develops a broad understanding of bioprocesses and selecting appropriate bioreactors for selective products. This includes bioreactions, principles of microbial fermentation with specific examples (medium constituents, choice of feedstock, media preparation), fermentation conditions (examples, types, mode of operation of fermenters) and design of bioreactors. You discuss some fundamental products of aerobic and anaerobic fermentations with examples from biofuels, biosurfactants, enzymes, probiotics, pharmaceuticals and healthcare. You also discuss scaling up fermentation and waste minimisation issues.

Drug Formulation and Delivery

You gain an in-depth appreciation of the process of converting a therapeutic agent into a medication that can be safely and effectively administered to patients. You will also gain a detailed knowledge of dosage, physicochemical principles the govern drug design, and the different types of drug formulation. The factors controlling the interaction of a drug with the body (pharmacodynamics) and of the body with the drug (pharmacokinetics) will also be explored.

Human Metabolism and Clinical Biochemistry

You gain a broad understanding of the human metabolism, endocrinology and clinical biochemistry. Metabolism, the chemical processes that occurs in living organisms, is examined in the context of carbohydrate and lipid metabolism, cellular respiration and metabolism of drugs. Endocrinology, the study of the physiological role of hormones, is covered in detail, including a review of the mechanisms underpinning hormone action, the roles of second messengers and endocrine system disorders. Enzyme kinetics and enzyme regulation is also a significant topic.

The module will also explore the methods used for the collection, measurement and analysis of clinical samples in the biomedical laboratory. You will also cover the principles and applications of clinical biochemistry investigations used in screening, diagnosis, treatment and monitoring of disease.

Molecular Biology and Bioinformatics

This module introduces you to a range of modern molecular biology concepts and techniques. General molecular biology, molecular biology of genetic diseases and the use of molecular biology for applications such as the production of recombinant proteins and biomedical science forensic applications will be addressed. The new age of molecular biology is underpinned by gene/genome sequencing, sequence analysis and sequence manipulation. You will be given a thorough introduction to the principles of sequence analysis and how these techniques have revolutionised all areas of molecular biology. Particular attention will be paid to the technique of PCR. The module will also introduce bioinformatics concepts around visualising and analysing DNA sequence data, as well as basic molecular data analysis. The module content will be delivered via a series of interactive lectures that will allow students to gain insight into the theoretical aspects of molecular biology and bioinformatics. A series of laboratory practical sessions will introduce the basic techniques that lie at the heart of modern molecular biology such as DNA purification, PCR, restriction digestion, nucleic acid analysis via agarose gels, and sequencing.

Organic Chemistry

You will build on your prior knowledge of organic chemistry and learn the concept of retrosynthetic analysis, the art of synthesising any molecule however complex it is! You will also learn strategies to control regio- and chemoselectivity. Moreover, you will consider more advanced areas of organic chemistry, eg pericyclic reactions, heterocyclic chemistry and you will get introduced to organometallic chemistry that expands the range of chemical transformation beyond classical chemistry.

Structure Determination

All research, analytical and industrial laboratories require a range of techniques that allow you to determine and predict the chemical structure of molecules and biomolecules. This module covers the most significant molecular structure determination techniques including nuclear magnetic resonance, mass spectrometry, UV-visible and infrared spectroscopies, elemental analysis and crystallography.

 

Year 3 optional placement year

Final-year core modules

Advanced Organic Chemistry

You will massively expand your knowledge of organic chemistry, focusing on advanced synthetic methodologies involving the chemistry of enoid reagents (carbenes, nitrenes and ylides), in addition to in-depth study of various state-of-the-art organometallic transformations, and ultimately the applications of them combined in designing asymmetric syntheses. You also consider different modern strategies of chemical synthesis, eg combinatorial and parallel synthesis.

Biologics and Health Product Development

You will develop the necessary entrepreneurship skills to understand the process of business start-up and be introduced to the necessary tools to manage nutrition, medical, biotech and the health care sector ventures. You will gain an awareness of the real-world challenges associated with the launch of a healthcare product from laboratory bench to the bedside. You will learn to research the market for gaps, design a product to fill that unmet need, and develop a business plan.

Biotherapeutics

Biotherapeutics are medicinal products derived from living organisms. This module looks at the role of a biologist in the upstream and downstream aspects of a typical bioprocess. You cover the molecular and cell biology techniques required during the upstream part of the process including selecting suitable production organisms, recombinant DNA technologies and synthetic biology. You cover the different fermentation strategies and how these relate to the product being manufactured, economics and sustainability of the process. You learn about controlling and monitoring the fermentation process using analytical methods and process analytical technology.

For the downstream processing aspects, you focus on the different separation and purification strategies used for isolating the target product. This module highlights the regulatory and quality management aspects that impact on a bioprocess at all of these stages, in particular the roles of good laboratory and manufacturing practice. You develop an understanding of the multidisciplinary nature of the bioprocessing industry and how a biologist is required to have an appreciation of the engineering, chemistry, economic and regulatory aspects of a bioprocess.

Human Ageing and Disease

You develop your understanding of the molecular, cellular and whole organism ageing processes. This module addresses how ageing occurs by the accumulation of damage to molecules, cells and tissues, resulting in a loss of function and leading to an increased risk of death. Ageing is a major risk factor for a number of diseases including dementia, Alzheimer’s, Parkinson’s, cardiovascular diseases and cancer. This module addresses advances in intervention mechanisms which have contributed to reduced disease risk and development in an ageing population.

Medicinal Chemistry and Drug Discovery

You will combine your advanced chemistry knowledge in the context of applications in biological context. You will develop strong understanding of the concepts of drug molecules and drug targets, the process and strategies of drug development, and you will be able to appreciate the journey to bring a molecule from the laboratory bench to the pharmaceutical market following the lifecycle of a drug from discovery to clinical trials and approval. You will focus on certain essential classes of drugs, eg antibiotics and anti-cancer drugs.

Science Research Project

You complete an in-depth, independent investigation into a specialist aspect of your field of study. In your project you will bring together a range of practical and academic skills developed in previous years of study. Regardless of the nature of the project, this process acts as a capstone experience requiring analysis and critical evaluation of data as well as critical reflection on the potential risks, moral and ethical issues. This piece of work will involve a significant individual contribution on your part. You will be supported by the appointment of an academic staff member as your research supervisor. They will act as a mentor and guide you through the development and completion of your research project.

Finally, you will communicate your independent research by producing a research poster and journal article to allow you to develop essential skills which mirror professional practice when research is presented at scientific conferences and for publication.

 

Modules offered may vary.

 

How you learn

This course aims to produce graduates who are competent in a range of knowledge, understanding, experience and skills appropriate to pharmaceutical science. The learning and teaching strategy encourages a progressive acquisition of subject knowledge and skills by moving from study methods that have a greater degree of support and assistance towards more independence and self-direction.

Each programme and module is supported by a specific virtual learning environment (VLE) site.

You learn through a range of teaching and learning methods including:

  • lectures
  • tutorials
  • seminars and workshops (including oral presentations and poster sessions)
  • laboratory work
  • computer laboratory-based sessions (simulations, structure drawing etc)
  • group projects
  • research projects

How you are assessed

The programme assessment strategy tests your subject knowledge, independent thought and skills acquisition, and provides the sort of information that will be useful to employers. It is robust, equitable and manageable, and incorporates both formative and summative assessments.

You may be assessed through:

  • formal exams, including 'unseen' exams
  • laboratory and/or fieldwork skills and reports
  • computer-based assessments
  • problem-solving exercises
  • data interpretation exercises
  • critical analysis of case studies
  • oral presentations and technical interviews
  • essays, literature surveys, evaluations and summaries
  • collaborative project work
  • preparation and display of posters
  • planning, conduct and reporting of project work
  • reflective statements or diaries
  • peer assessment.

You are presented with an assessment schedule with details of the submission deadlines for summative assessments.


Our Disability Services team provide an inclusive and empowering learning environment and have specialist staff to support disabled students access any additional tailored resources needed. If you have a specific learning difficulty, mental health condition, autism, sensory impairment, chronic health condition or any other disability please contact a Disability Services as early as possible.
Find out more about our disability services

Find out more about financial support
Find out more about our course related costs

 
 

Entry requirements

Entry requirements

Call us on 0800 952 0226 about our entry requirements

For additional information please see our entry requirements

International applicants can find out what qualifications they need by visiting Your Country


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

 

Employability

Career opportunities

The UK is home to some of the world’s leading pharmaceutical companies and continues to develop best-selling prescription drugs. Pharmaceutical scientists work in areas such as research, product development, quality assurance and analytical science, marketing and sales within the pharmaceutical and chemical industries and elsewhere. Many pharmaceutical scientists work in laboratories, hospitals and educational establishments. As well as working directly within the industry, pharmaceutical science graduates are well qualified for careers in teaching, forensic science, environmental protection, and health and safety assurance.

Work placement year

A work placement officer and the University's award-winning careers service are available to help you with applying for a placement. Advice is also available on job hunting and networking.

By taking a work placement year you gain experience favoured by graduate recruiters and develop your technical skillset. You also develop the transferable skills required in any professional environment. Transferable skills include communication, negotiation, teamwork, leadership, organisation, confidence, self-reliance, problem-solving, being able to work under pressure, and commercial awareness.

An increasing number of employers view a placement as a year-long interview and, as a result, placements are becoming an essential part of an organisation's pre-selection strategy in their graduate recruitment process.

Potential benefits from completing a work placement year include:

  • improved job prospects
  • enhanced employment skills and improved career progression opportunities
  • a higher starting salary than your full-time counterparts
  • a better degree classification
  • a richer CV
  • a year's salary before completing your degree
  • experience of workplace culture
  • the opportunity to design and base your final-year project within a working environment.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:

  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student enrolment adviser

 
 

Full-time

Entry to 2020/21 academic year

Fee for UK/EU applicants
£9,250 a year

More details about our fees

Fee for international applicants
£13,000 a year

More details about our fees for international applicants


What is included in your tuition fee?

  • Length: 3 years (or 4 with a work placement)
  • UCAS code: F151 BSc/PSci
  • Semester dates
  • Typical offer: Call us on 0800 952 0226 about our entry requirements

Apply now through Clearing

 

Part-time

2020/21 entry

Fee for UK/EU applicants
£4,500 (120 credits)

More details about our fees

  • Length: 6 years if entering Year 1; 4 years if entering Year 2
  • Enrolment date: September
  • Semester dates

Apply online (part-time)

 
  • On video

    National Horizons Centre

    The NHC is a £22m research, teaching and training facility which addresses the growth needs of the bio-based industries set to transform the UK economy, including biologics, industrial biotechnology and bio-pharmaceuticals.

     
 
 

Choose Teesside

iPad

Are you eligible for an iPad, keyboard and £300 credit for learning resources?

 

Accommodation

Live in affordable accommodation right on-campus

 

Campus

Study in our town-centre campus with over £270m of recent investment

 

Industry ready

Benefit from work placements, live projects, accredited courses

 

Get in touch

 

Open days