Digital analytics and machine learning: Predicting cell growth through AI

Research

Challenge


Solution


Impact

Dr Angione’s research, which has been published in the Proceedings of the National Academy of Sciences (PNAS), showed that, not only can machine learning be used to interpret data and give a successful prediction of how cells might react under certain conditions, but also understand the chemical processes which led to this conclusion.

This could have major implication in fields such as medicine, for example to predict how a tumour or cancerous cells might grow. Equally in pharmacology, the ability to understand the different chemical reactions that take place is vital to identifying potential side-effects of a drug.

View all partnerships



Go to top menu