Postgraduate study

This course is available for January 2019 entry

MSc Mechanical Engineering (with Advanced Practice)

This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. You study develop knowledge and key skills in CAD/CAM and Product Development, Finite Element Methods and Machine Design and options available include Automotive Engineering and Vehicle Design, Manufacturing Systems, Project Management and Enterprise, Supply Chain Management and Applied Continuum Mechanics.

Course information


  • 2 years; January start

More full-time details

2018 entry


  • Not available part-time

Contact details

Further information

  • Facilities

    Reporting on engineering at Teesside University

    A tour of Teesside University engineering facilities and employer partnerships, enabling us to produce graduates ready for the world of work.


There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Mechanical Engineering – one year full time
  • MSc Mechanical Engineering – two years part time
  • MSc Mechanical Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

Professional accreditation

Our one-year MSc Mechanical Engineering is accredited to CEng level by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

The accredited Masters-level award will provide you with the underpinning knowledge, understanding and skills in preparation for your registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

The two-year MSc Mechanical Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as accredited title.

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

CAD/CAM and Product Developments

This module provides knowledge of time compression technologies to enable design and delivery of innovative products and reduce time to market. It includes a study of rapid prototyping and production development techniques alongside a review of collaborative product development and concurrent design engineering strategies using 3-D modelling to minimise manufacturing lead time. You are introduced to various software packages; you are encouraged to take a critical view of these packages and consider their integration with other systems.

Finite Element Methods

This module provides practical experience of using commercially available finite element packages. The application of the method is demonstrated using a number of case studies. You are encouraged to use the technique as an extension of your standard text books in solving design and manufacturing problems.

Machine Design

Engineering Design may be defined as an interactive decision-making process that has as its objective the creation and optimization of a new or improved technical system for the fulfilment of a human need or desire, with due regard for conservation of resources and environmental impact.

This module develops the comprehensive theories and the principles of Mechanical Design and applies them to the design and analysis of realistic engineering problems analytically and/or computationally.
Specific areas of study include:
- advanced principles of design and stress analysis
- design of a mechanical drive
- design details and other machine elements
- experimental stress analysis

Lectures introduce each major topic on the module emphasizing both the conceptual and theoretical development and their applications to realistic engineering problems, through worked examples. Tutorials and seminars are used primarily for you to practice and to provide feedback. Laboratory session is used to investigate the experimental stress analysis and develop a deeper understanding of the theory and principles.

Assessment is by three in-course assignments.

Practical Health and Safety Skills

This module ensures you are able to work in a safe manner during practical sessions. You learn about the need to adhere to health and safety regulations. You are also taught good practice and learn how to maximise your safety and the safety of others.

Project Management and Enterprise

This module is designed to equip you with the necessary skills to successfully project manage new product developments focusing on project management skills and processes, quality assurance issues, new product development processes and statistical analysis techniques. It provides you with an opportunity to develop a project plan for a programme of research based on scientific literature, with particular reference to key concepts such as innovation, enterprise and originality.

This fundamental project management basis is interlinked with developing an understanding of entrepreneurial best practices to enable you to transfer your ideas into the commercial arena. This element of the module focuses on intellectual property rights, legal, regulatory and ethical issues, business start-up processes and includes an element of foresight thinking.

Research and Enterprise

This module offers foundation knowledge in a range of research methods. It illustrates the significant role that theoretical principles play in the research process and the importance of presenting clear and credible arguments and evidence to support the design and findings of research.

Research Project

Investigate an area of engineering or science for an extended period through a research project or design project, working independently at a level recognised as at the forefront of the discipline. You develop key research skills, applying and creating your knowledge through keynote lectures and self-managed independent study. You will demonstrate your capacity for comprehensive and objective analysis, and for developing innovative and constructive proposals as a solution to the project topic. We support you through tutorials and/or one-to-one guidance but you require a high degree of autonomy.


and one optional module

Automotive Engineering and Vehicle Design

This module equips you with a comprehensive knowledge of state-of-the-art techniques, methodologies and approaches to automotive engineering and vehicle design; and in particular, seeks to develop your systematic approach to design and innovation processes in automotive engineering. You develop a systematic and critical understanding of the breadth and depth of systems, modules and components of modern vehicles, together with a critical awareness of the key drivers for continuous improvement and innovation in the automotive sector.

The module complements technical understanding with a critical awareness of current problems, regulatory frameworks and safety and environmental issues, informed by current professional practice in the area of vehicle design and automotive engineering.

This module is delivered through a structured series of lectures for the duration of the module, supported by tutorial sessions. In addition to evaluating current designs and practice, you are encouraged to develop your own design concepts and innovations.

Manufacturing Systems

This module considers typical hardware and software involved with automated machinery and production processes. It shows you how machines can be integrated into flexible cells and flexible manufacturing systems and, when linked with appropriate production management software, into computer integrated manufacturing systems.


Advanced Practice options

Research Internship

Develop your research and academic skills by undertaking a research internship within the University. Experience working as part of a research team in an academic setting – ideal if you are interested in a career in research or academia.

Study Abroad

Take part in an academic exchange with one of our partner universities and experience study, student life and culture in a different environment. This option offers a valuable life experience and enhances your ability to adapt to working and living internationally. This option does incur additional costs such as travel and accommodation. You must also take responsibility for ensuring you have the appropriate visa to study outside the UK, where relevant.

Vocational Internship

Spend one semester working full-time in industry. We have close links with a variety of local companies who can offer you the chance to develop your knowledge and professional skills in the workplace through an internship. Although we can’t guarantee you an internship, we will provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge.


and one of the following

Applied Continuum Mechanics

This module develops a universal framework of mechanical principles that applies to all materials and integrates classical treatment of fluids and solids with more recent developments in rheology. The theoretical development is made concrete through extensive use of examples drawn from real world applications to ensure it is thoroughly grounded in current industrial practice.

Tutorials provide the opportunity for you to become fluent in the manipulation of the appropriate notations, principles and laws; and to develop competence in the application of these principles to a broad range of real world examples and Case Studies.

Supply Chain Management

This module demonstrates how to benchmark an organisation and introduces you to the concepts of key performance indicators, total quality management (TQM), six sigma, total productive maintenance (TPM) and supply chain management. You learn the manufacturing assessment methodology based on data provided in a benchmarking case study. Topics covered in TQM, TPM, and supply chain management enable you to plan activities, which improve quality programme maintenance planning and supply chain integration for an organisation and move that organisation towards sustainable competitive advantage.


Modules offered may vary.

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Career opportunities

Mechanical engineers typically work in structural engineering, research and development, automotive engineering and design, the aerospace industry, manufacturing, processing and chemical industries as well as management positions.

Entry requirements

You will need a first degree equivalent to at least a UK second class (2.2) honours degree. A range of degree subjects are acceptable including mechanical engineering, aerospace engineering, automotive engineering, mechatronics and other subjects with significant mechanical engineering content.

Non-UK students must also meet the University's minimum English language requirements.

For additional information please see the entry requirements in our admissions section

International applicants can find out what qualifications they need by visiting Your Country

Course information


  • 2 years; January start

More full-time details

2018 entry


  • Not available part-time

Contact details

Further information