Skip to main content
Postgraduate study
Aerospace Engineering (with Advanced Practice)

Aerospace Engineering (with Advanced Practice) MSc

This MSc programme offers you an advanced level of study in specific aspects of aerospace engineering which is in continuous demand from industry.

 

Course overview

Accredited

You develop knowledge and key skills in advanced aerospace structures, advanced fluid dynamics, finite element methods, research and enterprise, space mission analysis and trajectory design, and supply chain management.

You have access to our flight simulator, wind tunnel, materials and manufacturing labs, structural test labs and electron microscope. You also learn how to use industry-standard software such as the General Mission Analysis Tool (GMAT), NASA’s open-source software. The General Mission Analysis Tool (GMAT) is the world’s only enterprise, multi-mission, open-source software system for space mission design, optimisation, and navigation. The system supports missions’ in-flight regimes ranging from low Earth orbit to lunar, libration point, and deep space missions.There are three routes you can select from to gain a postgraduate master’s award:

  • MSc Aerospace Engineering – one year full time
  • MSc Aerospace Engineering – two years part time
  • MSc Aerospace Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification. The two-year master’s degree with advanced practice enhances your qualification by adding a vocational or research-based internship to the one-year master’s programme. A vocational internship is a great way to gain work experience and give your CV a competitive edge. A research internship provides you with the opportunity to develop your analytical, team-working, research and academic skills by working alongside a research team in an academic setting. We guarantee a research internship, but cannot guarantee a vocational internship. We will, however, provide you with practical support and advice on how to find and secure your own vocational internship position should you prefer this type of internship.

Download pdf Order prospectus

 

Course details

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

Advanced Aerospace Structures

Aircraft structures are characterised by their high strength to weight ratios - this is largely achieved by using monocoque and semi-monocoque thin walled components.

This module starts with a revision of torsion and shear flow and then explores the stress and shear flow distribution in loaded structures of increasing complexity. You examine the effects of loading on symmetrical beams and asymmetrical beams before turning your attention to more realistic aircraft type semi-monocoque structures.

The emphasis is on hand calculation techniques to ensure that you are able to sensibly interpret the results of finite element analyses that you conduct in the future on similar structures.

Advanced Fluid Dynamics

This module covers multiphase flow and computational fluid dynamics for various engineering applications, and incompressible and compressible flow applicable to flight of subsonic and supersonic aircraft.

In addition it includes a revision of the fundamental fluid flow and thermodynamic governing equations, introduction to CFD, multiphase flow, subsonic and supersonic around wings, flow through nozzles and diffusers, oblique shock waves and expansion waves, shock wave and boundary layer interaction.

The module content will be delivered by lectures, seminars and laboratory sessions. This will include a series of keynote lectures delivered by academic staff providing the core of the learning experience, supplemented by problem-solving seminars and IT-based laboratory sessions providing an opportunity to explore complex flows through the use of CFD codes.

Advanced Practice

Advanced Practice is normally undertaken over a one semester period and has been developed to enable a student to gain real-world practical experience to enhance their employability and academic learning. Students will receive preparatory sessions to enable them to apply to internship opportunities, which normally include:

Vocational internships with external organisations based offsite
Research or development internships based on campus
Employer-led internships based on campus
Students will undertake an appropriate advanced practice opportunity to meet their skill set and aspirations, related to their course.

All students will be assigned an academic supervisor to provide academic and pastoral support throughout their internship. Students will be assessed through a reflective report on a pass/fail basis. This module does not count towards the overall classification of the degree.

Engineering Research Project

You investigate an area of engineering and work independently to a level recognised to be at the forefront of the discipline. The topic can be in the form of a research project or a design project. Key skills in research and in knowledge application and creation will be developed through keynote lectures and self-managed independent study. You are required to demonstrate the capacity for a comprehensive and objective analysis, and for developing innovative and constructive proposals for the solution to the project topic.

Finite Element Methods

This module provides practical experience of using commercially available finite element packages. The application of the method is demonstrated using a number of case studies. You are encouraged to use the technique as an extension of your standard text books in solving design and manufacturing problems.

Space Mission Analysis and Trajectory Design

This module elaborates the fundamental concepts of space mission analysis, spaceflight orbital mechanics and introduces trajectory design for planet-centred and interplanetary missions.

You start with a short review of the mission selection process. And you are introduced to the design and characterisation of planet-centred orbits and related orbit transfer manoeuvres.

The module investigates the mathematical modelling and analysis of orbital perturbation, Earth-bound and interplanetary trajectory design, gravity assist manoeuvres. You are introduced to concepts of space system theory applied to missions around the Lagrange’s points.

Supply Chain Management

This module demonstrates how to benchmark an organisation and introduces you to the concepts of key performance indicators, total quality management (TQM), six sigma, total productive maintenance (TPM) and supply chain management. You learn the manufacturing assessment methodology based on data provided in a benchmarking case study. Topics covered in TQM, TPM, and supply chain management enable you to plan activities, which improve quality programme maintenance planning and supply chain integration for an organisation and move that organisation towards sustainable competitive advantage.

Sustainability

You will investigate how the role of the engineer is becoming more focused on serving society as well as industry and to recognise the impact of engineers’ decisions on society and the environment.

As engineers of the future, you will need to have a sustainable worldview, acknowledging international, cultural, and diversity issues in society. In addition, you will also be expected to solve complex problems with consideration for multi-perspective views, long-term effects, risk, and the impacts of decisions on society.

This module will examine the key topics surrounding sustainability in the context of engineering applications across a range of disciplines and key future challenges such as energy, transport, and construction.

The subjects will be taught through a combination of lectures and seminars. Lectures will develop key concepts and knowledge. Seminars will allow more focused examinations of important issues and approaches.

 

Modules offered may vary.

 

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth.

In addition to the taught sessions, you undertake a substantive MSc research project and the advanced practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your advanced practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your advanced practice module is assessed by an individual written reflective report, together with a study or workplace log, where appropriate, and through a poster presentation.

 

Entry requirements

You need a first degree in aerospace engineering or relevant engineering discipline equivalent to at least a UK second class (2.2) honours degree. Relevant engineering disciplines includes aerospace, aeronautical, mechanical, and mechanical systems.

Students with a degree awarded outside the UK must also meet the University's minimum English language requirements.

International applicants who need a student visa to study in the UK should check our web pages on UKVI-compliant English language requirements. The University also provides pre-sessional English language courses if you do not meet the minimum English language requirement.

For general information please see our overview of entry requirements

International applicants can find out what qualifications they need by visiting Your Country

 

Employability

Career opportunities

Most aerospace engineering graduates seek careers in companies directly or indirectly linked to the aerospace industry. However, the skills and knowledge you acquire are also relevant to other sectors such as the automobile, engineering process, oil and gas, electronics, electrical engineering and renewable energy industries.

Our BEng/MEng graduates from Aerospace Engineering course have secured work/placement opportunities with Airbus, BAE Systems, EDF Energy, Rolls-Royce, GE Aviation, Qinetiq, Cobham, Jacobs Engineering Group, Cummins, Labman, Caterpillar and others.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:
  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student enrolment adviser

 
 

Professional accreditation

Engineering Council and The Instituion of Engineering and Technology accredited programme

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Full-time

2024/25 entry

Fee for UK applicants
£4,770 a year

More details about our fees

Fee for international applicants
£10,000 a year

More details about our fees for international applicants

  • Length: September enrolment: 20 months, including a summer break; January enrolment: 2 years, including two summer breaks
  • Start date: September or January
  • Semester dates

Apply now (full-time)

 

Part-time

  • Not available part-time
 

Choose Teesside

 
 

Get in touch

UK students

Email: scedtadmissions@tees.ac.uk

Telephone: 01642 738801


Online chat (general enquiries)

International students

Email: internationalenquiries@tees.ac.uk

Telephone: +44 (0) 1642 738900


More international contacts

 

Open days and events

Go to top menu