Skip to main content
Postgraduate study
Instrumentation and Control Engineering (with Advanced Practice)

Instrumentation and Control Engineering (with Advanced Practice) MSc

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. This course adds an advanced practice module to our one-year master’s and is an opportunity to enhance your qualification by an internship, research or study abroad experience.

 
  • Apply now to start in September or January. Apply now
 

Course overview

Accredited

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

There are three routes you can select from to gain a postgraduate master’s award. The one-year programme is a great option if you want to gain a traditional MSc qualification. The two-year master’s degree with advanced practice enhances your qualification by adding a vocational or research based internship to the one-year master’s programme. A vocational internship is a great way to gain work experience and give your CV a competitive edge. A research internship provides you with the opportunity to develop your analytical, team-working, research and academic skills by working alongside a research team in an academic setting. We guarantee a research internship, but cannot guarantee a vocational internship. We will, however, provide you with practical support and advice on how to find and secure your own vocational internship position should you prefer this type of internship.

Download pdf Order prospectus

 

Course details

Course structure

Core modules

Advanced Practice

Advanced Practice is normally undertaken over a one semester period and has been developed to enable a student to gain real-world practical experience to enhance their employability and academic learning. Students will receive preparatory sessions to enable them to apply to internship opportunities, which normally include:

Vocational internships with external organisations based offsite
Research or development internships based on campus
Employer-led internships based on campus
Students will undertake an appropriate advanced practice opportunity to meet their skill set and aspirations, related to their course.

All students will be assigned an academic supervisor to provide academic and pastoral support throughout their internship. Students will be assessed through a reflective report on a pass/fail basis. This module does not count towards the overall classification of the degree.

Data Acquisition and Signal Processing

You are introduced to the theorem, principles and techniques of data acquisition and digital processing including sampling, digital signal analysis in time and frequency domains. You also focus on the impact of digital technologies on the design of modern industrial measurement systems. The industrial software for measurement systems will also be introduced with a series of real measurement applications.

Digital Control Design and Implementation

You develop your knowledge of digital circuit analysis and design as well as an understanding of digital control circuits/systems design methodology and implementation technology. You study a range of methods such as top-down design method, design automation framework and tools, VHDL modelling and rapid prototyping. You gain a technical competence and an appreciation of the capabilities and limitations of modern digital control circuits/systems design and implementation. You study through a series of lectures and labs, that are used to explain theory and discuss applications. Practical sessions involve the use of design tools, modelling of digital components and systems, circuit simulation and implementation.

Electronic Signal Conditioning

This module explores the circuit technologies required to make sensitive and precise measurements. Such systems form the signal-conditioning stages of most industrial, commercial and scientific equipment and have to present the raw signal from the sensor in a suitable format for digital signal processing.

Engineering Research Project

You investigate an area of engineering and work independently to a level recognised to be at the forefront of the discipline. The topic can be in the form of a research project or a design project. Key skills in research and in knowledge application and creation will be developed through keynote lectures and self-managed independent study. You are required to demonstrate the capacity for a comprehensive and objective analysis, and for developing innovative and constructive proposals for the solution to the project topic.

Identification and Model Predictive Control

This module develops, from first principles, the methods and techniques associated with system identification. The module shows how these techniques can be used in the formulation of adaptive and model based Control schemes. Finally, the practical implementation of these control schemes is considered.

The module is delivered through a series of weekly lectures. These are used to explain theory and to discuss applications. Practical sessions supported by MatLab and SimuLink are used to reinforce the lecture material and provide an opportunity to develop the required practical skills.

The module is assessed through a combination of in-course assignment and a computer based end examination using MatLab and SimuLink.

Robust Control Systems

In this module the robust control problem is discussed. The module describes the QFT approach to robust control and how to apply this to typical engineering problems. You then discuss the use of expert systems/fuzzy logic solutions as an alternative. The module is delivered through a series of weekly lectures. These are used to explain theory and to discuss applications. Practical sessions supported by MatLab and SimuLink are used to reinforce the lecture material and provide an opportunity to develop the required practical skills. The module is assessed through a combination of in-course assignment and a computer based end examination using MatLab and SimuLink.

Sustainability

You will investigate how the role of the engineer is becoming more focused on serving society as well as industry and to recognise the impact of engineers’ decisions on society and the environment.

As engineers of the future, you will need to have a sustainable worldview, acknowledging international, cultural, and diversity issues in society. In addition, you will also be expected to solve complex problems with consideration for multi-perspective views, long-term effects, risk, and the impacts of decisions on society.

This module will examine the key topics surrounding sustainability in the context of engineering applications across a range of disciplines and key future challenges such as energy, transport, and construction.

The subjects will be taught through a combination of lectures and seminars. Lectures will develop key concepts and knowledge. Seminars will allow more focused examinations of important issues and approaches.

 

Modules offered may vary.

 

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report together with a study or workplace log, where appropriate, and through a poster presentation.

 

Entry requirements

You must have a second class (2.2) honours degree (or higher). We consider a wide range of first degree subjects including automation and control engineering, electrical and electronic engineering, electrical engineering, electrical systems, electronic engineering, electronic systems, instrumentation/control engineering, mechatronics, and robotics.

Students with a degree awarded outside the UK must also meet the University's minimum English language requirements.

International applicants who need a student visa to study in the UK should check our web pages on UKVI-compliant English language requirements. The University also provides pre-sessional English language courses if you do not meet the minimum English language requirement.

For general information please see our overview of entry requirements

International applicants can find out what qualifications they need by visiting Your Country

 

Employability

Career opportunities

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:
  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student enrolment adviser

 
 

Professional accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements

Full-time

2024-25 entry

Fee for UK
£4,770 a year

More details about our fees

Fee for international applicants
£10,000 a year

More details about our fees for international applicants

2025-26 entry

Fee for UK applicants
£5,417.50 a year

More details about our fees

Fee for international applicants
£10,000 a year

More details about our fees for international applicants

  • Length: September enrolment: 20 months, including a summer break; January enrolment: 2 years, including two summer breaks
  • Start date: September or January
  • Semester dates

Apply now (full-time)

 

Part-time

  • Not available part-time
 

Choose Teesside

 
 

Get in touch

UK students

Email: scedtadmissions@tees.ac.uk

Telephone: 01642 738801


Online chat (general enquiries)

International students

Email: internationalenquiries@tees.ac.uk

Telephone: +44 (0) 1642 738900


More international contacts

 

Open days and events

Sat

18

Jan

Postgraduate open day

9.00am - 3.00pm

On campus


Book now

Go to top menu