Skip to main content
Postgraduate study
Engineering & Construction

Sustainable Energy and Clean Technology MSc

This course is ideal for those looking to develop green industries, supporting the transition to clean energy and the reduction of carbon emissions.

 

Course overview

Accredited

Sustainable engineering/energy and clean technology

Study a masters course in sustainable engineering/energy and clean technology and you may be eligible for a £12k scholarship

You cover a number of topics in sustainable energy and clean technology, broadening and deepening your understanding and knowledge of the field. You learn how to synthesise information from a variety of sources and develop your decision-making abilities in solving complex sustainability problems. Working with a supervisor, you also conduct a research project in a specific area of sustainable engineering.

You cover a number of topics in sustainability, broadening and deepening your understanding and knowledge of the field. You learn how to synthesise information from a variety of sources and develop your decision-making abilities in solving complex sustainability problems. Working with a supervisor, you also conduct a research project in a specific area of sustainable engineering.

Here at Teesside University, we undertake varied research in sustainability and are involved in several regional strategic projects, and we are spearheading an ongoing drive for clean energy and sustainability though our Net Zero Innovation Hub. Part of this includes a Net Zero Industry Innovation Centre, an innovative new £13.1m facility and key component of Tees Valley Combined Authority's regional innovation strategy, which will position Teesside firmly at the heart of the UK's green industrial revolution.

We are based in the Tees Valley, a hub of the green energy industry, housing bioethanol, hydrogen and offshore wind farms. The region is also a centre for investment in carbon capture and storage, and industrial decarbonisation. Delivering a Net Zero Teesside.

If you a looking to be involved in net zero initiatives, then this course is an ideal launchpad for your career, and there are four £12,000 Kellas Midstream Clean Energy Scholarships available to fund your studies. Find out more.

Download pdf Order prospectus

 

Course details

Course structure

Core modules

Engineering Research Project

You investigate an area of engineering and work independently to a level recognised to be at the forefront of the discipline. The topic can be in the form of a research project or a design project. Key skills in research and in knowledge application and creation will be developed through keynote lectures and self-managed independent study. You are required to demonstrate the capacity for a comprehensive and objective analysis, and for developing innovative and constructive proposals for the solution to the project topic.

Hydrogen Technologies and Fuel Cells

You explore the methods and technologies used to transport and accumulate hydrogen, and analyse the introduction of the hydrogen vector in the energy sector, paying attention to end use devices, for example fuel cells. You develop your knowledge of recent technologies relating to hydrogen, analyse real-world case studies, and explore the calculation codes for the measurement and testing of the performance of fuel cells.

Renewable Energy Generation

The module provides students with in-depth knowledge of the theory and principles of renewable energy technologies used for electricity generation. The module focuses on the principles, design, operation and grid connected applications of wind and photovoltaic technologies, and contrasts these with conventional power systems, such as coal and gas. The module will inform the student of current practices and technological advances in the field of renewables and will provide an opportunity to develop computing and practical skills related to this area.

Smart Grids

The module provides students with an in-depth knowledge of the principles of operation, design and utilisation of smart grids to optimise the transmission and distribution of power. It provides a generic treatment of various power system topologies with an emphasis on critical design parameters at distribution level and the evolution to the wider transmission network. The impact on existing networks and future developmental opportunities are considered alongside automation and control requirements. The module will also inform the students of recent technological advances in the field of electrical power transmission and will provide an opportunity to develop practical skills related to this area.

Sustainability

You will investigate how the role of the engineer is becoming more focused on serving society as well as industry and to recognise the impact of engineers’ decisions on society and the environment.

As engineers of the future, you will need to have a sustainable worldview, acknowledging international, cultural, and diversity issues in society. In addition, you will also be expected to solve complex problems with consideration for multi-perspective views, long-term effects, risk, and the impacts of decisions on society.

This module will examine the key topics surrounding sustainability in the context of engineering applications across a range of disciplines and key future challenges such as energy, transport, and construction.

The subjects will be taught through a combination of lectures and seminars. Lectures will develop key concepts and knowledge. Seminars will allow more focused examinations of important issues and approaches.

Zero Carbon Built Infrastructure

Built infrastructure consumes large amounts of energy, carbon and water, and produces pollution and waste during construction and operation. Sustainable design through green approaches can reduce environmental impacts substantially, decrease carbon dioxide emissions and reduce embodied carbon. You examine the design, construction and operation of zero carbon built infrastructure. Lectures develop key concepts and knowledge, seminars allow more focused examinations of important issues and approaches, and IT lab sessions develop your skills in using life cycle analysis software.

 

and one optional module

Big Data and Business Intelligence

You develop your ability to design and implement database, big data and analytics applications to meet business needs. A case study is used to follow the system development lifecycle. You develop a plausible application from inception to implementation for a real-world scenario.

You investigate the issues and technologies associated with implementing and supporting large scale databases and the services that are needed to maintain and access a repository of data. Investigations are undertaken in a number of areas including big data, data warehouses, integrating legacy data, data management and approaches that support the modelling and visualisation of data for a range of use views.

Circular Economy

Circular economy is an economic model that invites businesses, cities and countries to transform their approach to the use of materials and energy, and build a framework for an economy that is restorative and regenerative by design. It is an interdisciplinary arena embracing physical, social sciences and manufacture. You explore key topics relating to the practical applications of circular economy and examine approaches to solving challenges for achieving circular economy and environmental sustainability.

Power Conversion for Energy Systems

The module provides students with an in-depth knowledge of Power Electronic converters as they are used on power systems to allow efficient transmission of power from generator to consumer. The modules will teach about the operation and design of the main converters and their applications. It provides a generic treatment of various converter topologies with an emphasis on critical design parameters. Applications including HV DC transmission, static VAr compensation and interconnection of renewable energy sources and energy storage systems to utility grid are considered.

Project Management Philosophies and Tools

Contemporary project management is an evolving and extensive discipline that has grown substantially to meet the needs of modern project management demands. This module cultivates detailed and critical awareness of this domain and its expanding range of philosophies, tools and frameworks.

The purpose of this module is to introduce students to the expanding discipline of project management and familiarise them with modern and contemporary project management modalities and the importance of effective project management to organisational functioning, enterprise growth and development.

 

Modules offered may vary.

 

How you learn

You learn through lectures, tutorials and computer lab sessions.

Lectures deliver substantial elements of the subject content, provide explanations of complex concepts, and set the scene for your independent learning.

Tutorials and seminars are interactive and allow you to explore relevant topics in depth.

Some of the modules require specialist technical software and practical computer-based sessions are timetabled. You are supported in technical modules by industry-standard lab and computing facilities.

How you are assessed

You are assessed on your subject knowledge, independent thought and skills acquisition.

Assessments include design and lab reports, portfolios, exams, group work, posters presentations, technical interviews/oral presentations, literature surveys, evaluations and summaries, and a dissertation.

 

Entry requirements

Normally a 2.2 UK honours degree (or equivalent) in a subject with significant engineering content. This could include any engineering subject, technology, physics, and mathematics degrees which include applied maths subjects (for example, dynamics or fluid mechanics).

Students with a degree awarded outside the UK must also meet the University's minimum English language requirements.

International applicants who need a student visa to study in the UK should check our web pages on UKVI-compliant English language requirements. The University also provides pre-sessional English language courses if you do not meet the minimum English language requirement.

For general information please see our overview of entry requirements

International applicants can find out what qualifications they need by visiting Your Country

 

Employability

Career opportunities

This course gives you an industrially, commercially and professionally relevant education by developing your lifelong learning skills and giving you a progression route for further professional development.

You are prepared for a career understanding and tackling sustainability issues, driving rapid change in all sectors and contributing to climate change agendas at a regional, national and international level. You can work in a technical or managerial role in industrial sectors including manufacturing, chemicals and processing.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:
  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student enrolment adviser

 
 

Professional accreditation

Engineering Council and The Instituion of Engineering and Technology accredited programme

Accredited by The Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for further learning for registration as a chartered engineer. Candidates must hold a CEng-accredited BEng/BSc (Hons) first degree to comply with full CEng registration requirements.

Full-time

2024/25 entry

Fee for UK applicants
£7,365 a year

More details about our fees

Fee for international applicants
£17,000 a year

More details about our fees for international applicants

  • Length: September start: 1 year January start: 16 months including a summer break
  • Start date: September or January
  • Semester dates

Apply now (full-time)

 

Part-time

2024/25 entry

Fee for UK applicants
£820 for each 20 credits

More details about our fees

  • Length: September start: 2 years including a summer break January start: 28 months including two summer breaks
  • Attendance: Typically one or two days a week
  • Start date: September and January
  • Semester dates

Apply now (part-time)

Apply now (part-time)

 

Choose Teesside

  • News

    University collaboration with South Africa to support hydrogen research
    A delegation of senior South African government officials has visited Teesside University to learn about how it is helping the Tees Valley transform into a global hub for Net Zero technologies.

    Read the full story

    Professor Michael Short Net Zero accolade for Teesside University academic
    A Teesside University academic has today (Tuesday) been listed as one of the most influential people in the UK working within the Net Zero agenda.

    Read the full story

    Dr Danial Qadir, a research associate working in the laboratory for the Tees Valley Hydrogen Innovation Project. Project ‘Joseph’ to deliver ground-breaking hydrogen purification technology
    A new project developed by Teesside University alongside a leading industry partner is set to make a major impact in the implementation of hydrogen as a net-zero fuel.

    Read the full story

     
 
 

Get in touch

UK students

Email: scedtadmissions@tees.ac.uk

Telephone: 01642 738801


Online chat (general enquiries)

International students

Email: internationalenquiries@tees.ac.uk

Telephone: +44 (0) 1642 738900


More international contacts

 

Open days and events

Go to top menu