Skip to main content
Undergraduate study
Instrumentation and Control Engineering (with Foundation Year)

Instrumentation and Control Engineering (with Foundation Year)
BEng (Hons)

H664 BEng/ICEFY

 
 
 

Course overview

Instrumentation and control is a field applicable to many sectors of industry. It enables efficient and safe automatic control of large-scale continuous processes including nuclear power stations, oil refineries and chemical plants, down to smaller batch operations such as manufacturing, breweries and other food production facilities. These technologies are also applicable to many other areas, from advanced aircraft flight control to city traffic management systems.

This degree includes an integrated foundation year if you don’t have the appropriate subjects and/or grades for direct entry to Year 1 of the degree. The foundation year helps you develop your knowledge in mathematics and other important subjects to enable you to proceed confidently through the remainder of the programme.

The North East is a major centre for industries constantly seeking well-qualified engineering graduates. This degree programme takes full advantage of the University's location by providing you with significant practical elements and opportunities to engage with industry. Teesside University is a natural choice for students aiming high and seeking a solid base of engineering knowledge and skills from which to climb the career ladder. The programme is built around a pair of discipline-based threads – measurement systems and control systems. These threads form the basis of the majority of modules that run through all years 1 to 3 of the programme. The other modules, such as the maths, skills and project modules, support these threads and provide a more rounded and industrially relevant educational experience. You can work in a wide range of industries – oil and gas, manufacturing and environmental agencies.

This course is accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partly meeting the academic requirement for registration as a Chartered Engineer.

Professional accreditation

This programme adds a foundation year to our Institute of Engineering and Technology accredited BEng (Hons) Instrumentation and Control Engineering.

 
 

Course details

In the foundation year (Year 0) you study a range of mathematics and fundamental science and engineering subjects, and you develop important practical laboratory skills to prepare you for the remainder of your programme. The content of the remaining years of this programme is identical to the content of our BEng (Hons) Instrumentation and Control Engineering degree.

The foundation year of this programme is sufficiently broad in content to provide you with the flexibility to change degree subjects after you successfully complete the foundation year.

If your ultimate aim is to graduate with a master’s degree rather than a BEng degree, after successfully completing the foundation year, and providing you achieve excellent grades, you would have the option of joining one of our integrated master’s degrees leading to the award of an MEng (Hons) degree.

Course structure

Year 0 (foundation year) core modules

Engineering in Practice

Engineering Principles

You gain an introduction to engineering physical, thermal, fluid, electrical and mechanical systems in engineering and the scientific laws and principles that govern them. You are prepared for further studies involving these principles of engineering science.

The module is delivered in combined lecture/problem solving tutorial sessions. Laboratory practical sessions support the learning objectives. The problem solving tutorials and the practical sessions enhance the understanding of principles.

Engineering the Future

Global Grand Challenges

This module focuses on how science can help address some of the biggest global Grand Challenges that face society. This reflects the University’s focus on externally facing research that makes a real, practical difference to the lives of people and the success of businesses and economies.

You work on a project in a group, to enabling you to develop innovative answers to some of the biggest issues of our time based on five thematic areas – health and wellbeing, resilient and secure societies, digital and creative economy, sustainable environments and learning for the 21st century.

Materials Science

Mathematics in Engineering

You are introduced to mathematical notation and techniques. The emphasis is on developing the skills that enable you to analyse and solve engineering problems. Topics studied include algebraic manipulation and equations, trigonometry, trigonometric functions and an introduction to descriptive statistics.

The module is delivered during combined lecture/tutorial sessions. Worked examples illustrate how each mathematical technique is applied. Problem solving tutorial exercises give you the opportunity to practice each skills or techniques.

 

Year 1 core modules

Electrical Principles

You are introduced to the fundamentals of electrical circuit theory and how to apply this to analyse simple electric circuits. You are also introduced to a range of standard electrical circuits and how these may be applied in engineering problems. You attend a series of weekly lectures to learn the theory, discuss applications and for solving simplified illustrative examples. You also attend practical sessions to reinforce the lecture material and develop practical electrical skills.

Electronic Principles

This module gives you a basic understanding of the physical fundamentals used in electrical engineering, together with specific techniques you need to determine the behaviour of electric circuits.

We cover the fundamentals of electrical circuit theory, analysis of electrical circuits, give you an understanding of simple analogue and digital circuits and an appreciation of their application to engineering problems.

We look at voltage, current, power, energy, resistance and impedance. Also magnetic fields and inductance, electric fields and capacitance, Kirchhoff’s Laws. We examine time varying voltages and currents, effects on inductors and capacitors, sinusoidal voltage and current use of symbolic notation.

You also study power, reactive power and apparent power, circuit analysis techniques, mesh and nodal analysis, transistors and properties of amplifiers.

Our primary method of teaching is lectures supported by laboratory sessions, tutorials, problem solving and directed learning.

You learn how to:

  • understand and use key elements of electrical and electronic theory
  • apply given tools in the solution of well defined electrical and electronic engineering problems
  • apply numerical skills to simple electrical and electronic engineering problems
  • use basic IT tools and specialist software to solve simple electrical and electronic engineering problems.

Engineering Mathematics

This module introduces the range of mathematical skills that are relevant to an engineering degree. You revisit and develop your knowledge of the fundamentals of algebra, trigonometry and basic statistics. The central ideas of vectors, matrices, complex numbers, and differential and integral calculus are also examined.

Throughout the module you develop a range of mathematical skills and techniques fundamental to the solution of engineering problems. You also advance your skills in selecting and applying mathematical techniques.

This module is delivered through a combination of lectures and tutorial sessions.

Engineering Practice

Physics and Instrumentation

This module provides you with an introduction to instrumentation, through studying the principles and characteristics of measurement systems and elements, and their underlying physical principles.

On successful completion of this module, you will be able to:

  • gather record, describe and evaluate sensor and system data from a variety of sources
  • demonstrate practical ability in carrying out experimental physical measurements, within defined contexts in areas relevant to physics and instrumentation
  • present written evidence to demonstrate understanding of experimental investigation of underlying physical principles of measurement sensors and systems.

You will be assessed on an exam, system design exercise and laboratory report.

PLCs and Embedded Systems

 

Year 2 core modules

Analogue Circuit Analysis

This module introduces communications principles and communications systems, including signal analysis and noise.

You develop an understanding of communications principles and transmission systems. From studying a range of elementary methods such as analogue communications, transmission media and signal analysis, you gain a technical overview and an appreciation of the capabilities and limitations of communications principles.

Industrial Communications

Instrumentation and Control Design

In this group project module you work in teams to solve an industrially relevant instrumentation and control design problem. You develop employability skills such as project management, presentation of work, research and commercial awareness to support problem solving in a technical context.

Integral Transforms and Matrices

You deepen your mathematical knowledge in key areas to use in a number of techniques to solve problems that arise in engineering domains. You develop competence in identifying the most appropriate method to solve a problem and its application.

You are introduced to the techniques and principles, and you are provided with problems that develop your competency in applying these techniques. You are shown how to implement numerical methods using software techniques.

Linear Systems and Control

You will develop a thorough understanding of time-domain and frequency-domain representations of signals and systems, and how to apply these ideas to engineering problems.

You will develop the necessary knowledge and techniques to create dynamic models of engineering systems.

We give you the knowledge and techniques for creating dynamic models of engineering systems and to apply computer-aided methods of analysis and design, plus use data acquisition systems for laboratory investigations.

We examine modelling and simulation, linear time-invariant systems, first and second-order systems, frequency response, poles and zeros, basic concepts of control, alternative control methods, fourier analysis and filters.

In lectures we explaina principles and discuss applications then give you a guided solution of relevant examples in tutorials.

In the laboratories you work in groups of up to three on a small engineering plant. You are expected to produce a model and carry out tests to establish parameters. This process enhances the theoretical work carried out in other parts of the module.

You learn how to:

  • demonstrate a detailed knowledge of aspects of linear systems and control
  • critically analyse a variety of ideas, contexts and frameworks associated with linear systems and control
  • apply, question and relate appropriate knowledge and concepts to a range of activities
  • identify key areas of problems and choose appropriate tools and methods for their resolution in a considered manner
  • use the industry-standard software MATLAB SIMULINK for simulation and design of signal processing and control systems
  • apply mathematical techniques to analyse and model signal processing and control systems.

Measurement Systems

Measurement systems is a module for students majoring in Instrumentation and Control engineering. This is one of modules which distinguish you from those who are on other courses.

From this module, you will learn to analyse the performance of measurement systems including the steady state and dynamic characteristics of a measurement system or an element. You will study principles of a wide range of sensing techniques and measurement systems.

A complete measurement system may include sensing element, conditioning circuit, signal transmission and signal display (presentation). All these elements comprise the full contents of this module. Besides, the noise and interference reduction techniques and protections including intrinsically instrumentation are important to instrumentation engineers. You will also touch these topics

Measurement and control is vital in process industries. This module introduces key elements in control and monitoring systems, for example measurement elements. Application of instrumentation can be found everywhere, from domestic water and gas systems to the NASA space station.

You discover constituents of measurement systems, sensing element (primary and secondary), signal conditioning, signal processing, display (data presentation) and static characteristics of sensors.

The module is divided into lectures, tutorials and practicals.

You will learn:

  • to demonstrate a detailed knowledge of the principles and characteristics of different sensors
  • to critically analyse the characteristics of system elements and their effect on system error
  • to understand the effects of noise and interference and methods of reduction
  • to employ a balanced logical and supported argument in the selection and analysis of sensor system
  • to apply numerical and statistical skills in the analysis and selection of measurement systems.

 

Final-year core modules

Advanced Sensors

Control

Digital Control and DCS

Modelling and Control of Power Electronic Devices

Project

This module extends the development of independent learning skills by allowing you to investigate an area of engineering or technology for an extended period.

You receive training in writing technical reports for knowledgeable readers and you produce a report or dissertation of the work covered. In addition, you give an oral presentation, a poster presentation or both. The topic can be in the form of a research project or a design project.

You develop key skills in research, knowledge application and creation through keynote lectures where appropriate and self-managed independent study. Support is provided through regular tutorial sessions.

 

Modules offered may vary.

 

How you learn

The objective of the programme is to produce graduates who possess a comprehensive knowledge and understanding of instrumentation and control engineering - and the skills and experience which allow them to analyse complex problems appropriate to instrumentation or control engineering.

This programme provides a number of contact teaching and assessment hours (lectures, tutorials, laboratories, projects, exams). You are also expected to spend time on your own - this self-study time is to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time. In most cases, around 60 hours will be spent in lectures, tutorials and laboratories. The remaining learning time is for you to use to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 120 credits so, during one year of full-time study, you can expect to have 1,200 hours of learning and assessment.

How you are assessed

Your course involves a range of assessment types including coursework assignments, laboratory work, presentations and tests.


Our Disability Services team provide an inclusive and empowering learning environment and have specialist staff to support disabled students access any additional tailored resources needed. If you have a specific learning difficulty, mental health condition, autism, sensory impairment, chronic health condition or any other disability please contact a Disability Services as early as possible.
Find out more about our disability services

Find out more about financial support
Find out more about our course related costs

 
 

Entry requirements

Entry requirements

Typical UCAS tariff based offers are 32-88 tariff points. Non-tariff qualifications are also considered. The level of the tariff point offer depends on the subjects that you have studied.

You are expected to have at least Level 2 literacy and numeracy skills. GCSE grade 4 (or C) a pass in Level 2 Functional Skills are acceptable.

If you are unsure your qualifications are eligible for admission, please contact our admissions office for advice.

Entry requirements are provided for guidance only. We offer entrance interviews which help us determine your eligibility for your chosen degree.

Eligible applicants are normally invited for interview before an offer is made. The interview is to determine your potential to succeed and to help us set appropriate entry conditions matched to personal circumstances and the demands of the course. The interview also enables you to see our excellent facilities, meet staff and students, and to learn more about studying at Teesside University.

We encourage all applicants to attend an interview, but if you are unable to attend an interview we may consider your application based on your UCAS application alone. Online or skype interviews may be possible in some cases.

Non-EU international students who require a student visa to study in the UK must meet, in addition to the academic requirements, the UKVI compliant English language requirement. Please check our international student pages for further information.

For additional information please see our entry requirements

International applicants can find out what qualifications they need by visiting Your Country


You can gain considerable knowledge from work, volunteering and life. Under recognition of prior learning (RPL) you may be awarded credit for this which can be credited towards the course you want to study.
Find out more about RPL

 

Employability

Career opportunities

As an instrumentation and control graduate you can be involved in activities such as:

  • designing and maintaining multimillion-pound chemical plants and manufacturing plants
  • developing advanced measurement and control systems
  • environmental analysis and monitoring.

Instrumentation and control graduates contribute to almost every area of modern manufacturing, service and financial industries. Graduates from similar programmes have found employment worldwide in a range of industrial and contracting companies including ABB, BASF, BNFL, Honeywell, Tioxide, Kavaerner, Sabic and Huntsman.

 

Information for international applicants

Qualifications

International applicants - find out what qualifications you need by selecting your country below.

Select your country:

  
 

Useful information

Visit our international pages for useful information for non-UK students and applicants.

Talk to us

Talk to an international student adviser

 
 

Full-time

Entry to 2019/20 academic year

Fee for UK/EU applicants
£9,250 a year

More details about our fees

Fee for international applicants
£11,825 a year

More details about our fees for international applicants


What is included in your tuition fee?

  • Length: 4 years (including a foundation year)
  • UCAS code: H664 BEng/ICEFY
  • Semester dates
  • Typical offer: Offers tailored to individual circumstances

Apply online (full-time) through UCAS

 

Part-time

  • Not available part-time
 
 
 
 

Facilities

A tour of Teesside University engineering facilities and employer partnerships, enabling us to produce graduates ready for the world of work.

 

Choose Teesside

iPad

Are you eligible for an iPad, keyboard and £300 credit for learning resources?

 

Accommodation

Live in affordable accommodation right on-campus

 

Campus

Study in our town-centre campus with over £270m of recent investment

 

Industry ready

Benefit from work placements, live projects, accredited courses

 

Get in touch

 

Open days

 
 

16 November 2019
Undergraduate open day

Book now